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Abstract

Many neural network models have been proposed that operate directly on graph data
structures. Existing methods are able to produce per-node feature embeddings for classi-
fication and regression and differ mainly in the methods by which they pass messages and
gather features from node neighbourhoods. While learning from graph topology in this way
has been explored well, the process of learning to modify graph topology in a semantically
meaningful manner has received less attention. This work explores learnable reductions of
graph topology by augmenting conventional graph representations and graph network mod-
els with the ability to merges together, while remaining fully-differentiable. The resulting
framework is able to learn image segmentation using only merge operations, and is theoret-
ically applicable to a large variety of problem domains where semantic reduction of graph
data is desired.

1 Introduction

Graphs are a profoundly useful data structure that is widely applicable in many domains of
computer science. Many common forms of data lend themselves directly to graph representa-
tions, such as scene graphs [Li+20], dependencies between publications [Sca+09], and social
networks [PAS14; BRR18; GL16]. Other common data types, such as language [Xu+18],
molecular structures [Sca+09; HYL17], music [MFP20], and images [Yan+21; Sca+09], may
also be represented using graphs. Consequently, graphs have drawn much attention among
deep learning researchers as a choice of representation, and many dedicated neural network
architectures and training techniques have been proposed and explored.

Node-focused models [Sca+09] which produce per-node predictions differ in the tech-
niques by which information is shared between neighbouring nodes during learning and
evaluation, and the choice of technique is closely tied to the resulting model’s capacity,
generalizability, and awareness of the graph’s topological structure. Graph neural networks
[Sca+09; BRR18] learn to refine per-node features by combining features from neighbouring
nodes using learnable per-node functions. Graph convolutional networks use shared func-
tions accross nodes while still gathering features from local node neighbourhoods. Other
works use random sampling procedures in order to overcome the highly-variable topology
that many graphs have [PAS14; HYL17].

While these methods are able to produce useful predictions for each node in a graph, the
graph topology is largely held fixed during training and evaluation, and the models being
trained have no capability to change the graph topology. Learning to change a graph’s
topology is a formidable problem, most notably due to the discrete and non-differentiable
nature of topological operations such as adding or removing nodes and edges. Yet there
are many applications in which models that are able to modify graph topologies would be
useful, such as segmentation, data reduction and visualization, or geometry processing.

In order to allow topological reductions on graphs in an end-to-end learnable manner, this
work presents an extended graph representation and neural network architecture that allow
merging operations on graphs to be performed within a fully-differentiable framework. The
graph representation consists of conventional per-node feature vectors and edges represented
using a dense adjacency matrix, and is extended to include a further dense matrix for
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recording pairs or groups of nodes that have been merged, which is referred to here as the
equality matrix.

The proposed network architecture consists of basic building blocks that aggregate fea-
tures from node neighbourhoods and decide to merge adjacent nodes. By representing the
adjacency and equality matrices densely, allowing continuous values, and expressing topo-
logical changes to the graph using fully-differentiable operations, the system is able to be
trained end-to-end. While this incurs a high memory and computation overhead during
training time, due largely to many redundant computations, the resulting network model
is agnostic to the size and topology of the graph, and may later be discretized for greatly
improved computational efficiency at test time.

2 Related Works

Conventional graph neural networks [Sca+09; BRR18] are a framework for learning on graph
data by associating individual graph nodes with differentiable functions that gather per-node
features according to local graph connectivity. Graph convolutional networks [KW17] are
a slight modification that allows weight-sharing between per-node functions for improved
generality. Stochastic learning models based on random walks [PAS14] and random sam-
pling [HYL17] are an alternative method for gathering graph features and learning topolog-
ical information. GraphSAGE [HYL17] is a random-sampling based graph neural network
framework that scales well to large graphs and performs well on previously-unseen graph
sizes and topologies. GraphSAGE has been applied successfully to dense image classifica-
tion [Yan+21] by first converting image pixels into nodes and connecting nearby pixels with
edges.

3 Method

An extended graph representation is presented which allows node merging operations to be
represented in a fully-differentiable manner, and a basic neural network architecture that
operates on this representation is proposed.

A graph containing N nodes is associated with per-node feature matrix F ∈ RN×D

where D is the number of feature dimensions. Edges between nodes are represented using
a dense adjacency matrix A ∈ RN×N , such that Ai,j is 1 if nodes i and j are connected
to one another, and 0 if they are not. Additionally, in order to express the merging of
nodes, an additional matrix E ∈ RN×N , termed the equality matrix, is defined as part of
the graph, such that Ei,j is 1 if nodes i and j are considered to be the same node, and 0
if they are distinct. Graphs are thus represented as a triple (E,A, F ) containing a feature
matrix, an adjacancy matrix and an equality matrix. Only undirected graphs are considered
in this work, which implies that the adjacency matrix A is symmetric. The equality matrix
E is symmetric due to the commutativity of equality and has a diagonal of all ones due to
reflexivity (every node is equal to itself).

During training, the adjacency matrix A and the equality matrix E are permitted to
contain continuous values between 0 and 1, in order to allow gradient-based optimization.
When two nodes are considered to be equal, it is assumed that they have identical feature
vectors and identical edges to other nodes. When pairs of nodes are to be merged, these
invariants as well as the logical integrity of the equality matrix are upheld by additional
procedures, referred to as coalescing, which are described in a later section.

The neural network model used in this work is node-focused, meaning that it refines
per-node feature representations, and consists of a modular architecture that is able to
use conventional fully-connected layers and activation functions on each node individually.
Two additional network components are proposed for gathering features from node vectors
and for deciding to merge pairs of nodes, which are referred to here as AGGREGATE and
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MERGE. The AGGREGATE function is nearly identical to that of GraphSAGE [HYL17],
except that no random sampling is used. The MERGE function is designed specifically for
the proposed network architecture and is described in a later section.

It should be noted that by choosing dense matrix representations, a large memory and
computational overhead is incurred for many types of graphs, which limits the complexity
of graphs that may be seen during training time. Additionally, merging operations result in
redundant representations and computations, which are needed for gradient-based training
but may be wasteful at test time. During evaluation time, these ”fuzzy” adjacency and
equality values may be discretized, using thresholding for example, and sparse matrix repre-
sentations may be used without redundancies in order to save on computational resources.
While the training procedure is relatively resource-constrained, a highly-efficient evaluation
procedure is thus theoretically possible. Additionally, because the network model is agnos-
tic to the graph’s size and topology, these optimizations mean that computations on much
larger graphs than those seen at training time are possible. However, these optimizations are
not explored in this work, and implementations thereof are deferred to future explorations.

3.1 Graph Coalescing

The introduction of the equality matrix and its interpretation allows the graph to contain
contradictory pieces of information without additional precautions. For example, given three
nodes i, j and k, if we have Ei,j = 1 and Ej,k = 1, then nodes i and j must be equal and
nodes j and k must also be equal. By transitivity, we expect nodes i and k to also be equal.
Unfortunately, because the equality of nodes i and k is separately represented as Ei,k, it is
possible without other constraints to have Ei,k = 0 which leads to a contradiction. Similar
contradictions may be derived using the presence or absence of edges to other nodes. In
order to make these contradictions impossible, whenever pairs of nodes are desired to be
merged, the graph representation is carefully updated to preserve its integrity while still
performing the desired merge operations.

Given a possibly-contradictory graph (Ê, A, F ) where Ê denotes pairs of nodes that are
to be merged, a valid graph (E′, A′, F ′) is created in three major steps. First, the equality
matrix is coalesced to gather any pair-wise equalities that are implied by transitivity. Next,
the adjacency matrix is coalesced to ensure that all identical nodes have identical edges to
other nodes. Finally, the feature matrix is coalesced to ensure that identical nodes have
identical features.

3.1.1 Coalescing the equality matrix

For any pair of nodes i and j, if there exists a third node k such that nodes i and k are
equal and nodes j and k are equal, then nodes i and j must also be equal by transitivity.
This means that given a tentative, non-coalesced equality matrix Ê, the coalesced equality
matrix E′ is given by

E′i,j = max
k

(Êi,k ∗ Êj,k). (1)

where multiplying elements of Ê behaves like a continuous logical AND, and computing the
maximum behaves like a continuous logical OR. Note that this procedure implicitly prefers
merging over not merging in the case of ties.

3.1.2 Coalescing the adjacency matrix

For any pair of nodes i and j, if there exists a third node k such that nodes i and k are equal
and nodes j and k are connected by an edge, then nodes i and j must also be connected by
an edge. Given the previous adjacency matrix A and the coalesced equality matrix E′, the
coalesced adjacency matrix A′ may be similarly computed as

A′i,j = max
k

(E′i,k ∗ Âj,k). (2)
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3.1.3 Coalescing the feature matrix

If two nodes i and j are equal, then their corresponding feature vectors Fi and Fj must
also be equal. When two nodes with non-equal feature vectors are being merged, there
exist many viable means by which to make those feature vectors identical. In this work, the
arithmetic mean is used for simplicity, and may be computed given the coalesced equality
matrix E′ using

F ′i =

∑
j(Fj ∗ E′i,j)∑

j(E
′
i,j)

. (3)

In other words, each new feature vector F ′i is the mean of all previous feature vectors from
nodes that are equal to i.

3.2 MERGE Network Module

Given a graph state (E,A, F ), the MERGE neural network component allows the model to
decide to merge adjacent nodes. The learnable parameters of the MERGE module are the
weights of a two-layer fully-connected neural network the predicts either a value between 0
and 1 for all pairs of nodes, which may be defined as

Zi,j = sigmoid(WMERGE
1 relu(WMERGE

0 [Fi|Fj ])) (4)

where [a|b] denotes the concatenation of vectors a and b.
This yields a matrix Z of values denoting whether any pair of nodes should be merged and

made equal. However, this does not yet take topology into account, nor does it necessarily
produce a symmetric matrix. The matrix Z is made symmetric by averaging itself with its
transpose

Z̄ =
Z + ZT

2
. (5)

Next, we ensure that nodes which were previously equal remain equal using the previous
equality matrix E, and that only adjacent nodes may be merged using the previous adjacency
matrix A, yielding a tentative equality matrix Ê given by

Êi,j = 1− (1− Ei,j) ∗ (1− (Z̄i,j ∗Ai,j)) (6)

where multiplication is used as a continuous extension of the logical AND, and the formula
1− (1− a) ∗ (1− b) is used as a continuous extension of logical OR.

This results in a tentative equality matrix Ê which may still possibly result in an invalid
graph. Thus, the final step in the MERGE component is to coalesce the graph (Ê, A, F ) into
(E′, A′, F ′) as described above. This results in a valid graph with some number of adjacent
nodes having been merged.

3.3 AGGREGATE Network Module

The AGGREGATE procedure gathers neighbouring features and allows them to be com-
pared with a given node’s features in order to update the per-node representation. For
any given node i, this is achieved by computing the arithmetic mean of all adjacent nodes,
weighted according to the adjacency matrix, and concatenating the resulting vector F̂i with
the given node’s feature vector Fi and applying a standard fully-connected layer and non-
linearity.

F̄i =

∑
j(Fj ∗A′i,j)∑

j(A
′
i,j)

,

F ′i = relu(WAGGREGATE[Fi|F̄i]).
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Figure 1: An example from the segmentation dataset. From left to right are the input image,
the initial adjacency matrix, the initial equality matrix, the target adjacency matrix, and the
target equality matrix. Note that the image is shown in its original two dimensions, but that for
all matrices, both the vertical and horizontal axes correspond to the entire, unrolled image.

3.4 Training Considerations

As with comparable node-focused network models, the AGGREGATE module modifies the
per-node feature vectors and may be trained using conventional per-node labels. But because
the MERGE network module modifies the adjacency and equality matrices in a differentiable
manner, these may also be used to guide gradient-descent-based training using an appropri-
ate training objective. For example, a network can be trained to match a group of nodes
using a target equality matrix where all those nodes are defined to be equal, and using a
simple loss function that attempts to match the equality matrix produced by the network
to the target matrix.

Furthermore, the possibility of the adjacency and equality matrices to take on continuous
values is useful for training but does not necessarily have a meaningful interpretation. The
network may be encouraged to create more meaningful binary values using auxiliary losses
that are annealed during training, but this is not explored in this work, and the equality
and adjacency values are discretized at test time using simple thresholding.

4 Experiments

In order to evaluate the performance of the proposed graph representation and neural net-
work modules, a synthetic dataset of image segmentation problems was created. Image
regions are randomly filled using a set of 32 randomly-generated class vectors with 32 fea-
ture channels, plus noise. These images are turned into graphs simply by creating a node
for each pixel and adding edges between each pixel node and its 4 immediate neighbours.
A variety of networks are trained to segment these image graphs by providing them with
ground-truth equality and adjacency matrices in which nodes from all contiguous regions
have been merged.

All networks begin with a per-node linear layer followed by the ReLU activation function.
Networks differ in the number of MERGE and AGGREGATE modules that they contain,
up to a maximum of 3 such modules in total and with at least one MERGE. All MERGE
and AGGREGATE modules within the same network have distinct parameters with respect
to each layer. The initial linear layer and all AGGREGATE layers are followed by a batch
normalization layer. The training objective was the mean absolute error between the ground
truth and predicted equality and adjacency matrices, weighted inversely by the number of
node replications due to merges.

After training for 6 hours each, the networks’ segmentation performance was evaluated
on a withheld test set using the adjusted Rand index. Segmentation was determined by
discretizing the equality matrix using a threshold value for each network that was tuned
using a withheld validation set. The training set consists of 2048 examples, while the
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Model Architecture Adjusted Rand Index ↑
MERGE, MERGE, MERGE 0.559
MERGE, AGGREGATE, MERGE 0.524
AGGREGATE, AGGREGATE, MERGE 0.234
AGGREGATE, MERGE 0.230
MERGE 0.230
AGGREGATE, MERGE, AGGREGATE 0.229
MERGE, AGGREGATE 0.229
AGGREGATE, MERGE, MERGE 0.189
MERGE, MERGE, AGGREGATE 0.161
MERGE, MERGE 0.157
MERGE, AGGREGATE, AGGREGATE 0.144

Table 1: Test results on the synthetic image segmentation task.

validation and test set both consist of 512 examples. Segmentation results are shown in the
next section.

The proposed methods were implemented using the PyTorch [Pas+17] library for GPU
computation and automatic differentiation. Models were trained using the AdaM optimizer
[KB17] with a learning rate of 0.001 and a batch size of 32. The UBC ARC Sockeye
computing platform [UBC19] was used to train and evaluate models.

5 Results and Discussion

Segmentation performance on the synthetic image dataset is summarized in Table 1. The
best-performing model was that consisting of three consecutive MERGE stages, which simply
had the most MERGE stages of any model. This makes sense, given that segmenting image
by merging adjacent pixels may take several merges for large regions. It is not clear from
these results what the benefit of the AGGREGATE module is, but it should be noted that
AGGREGATE is proposed and implemented here for the sake of completeness of the graph
neural network framework being presented, and is highly analogous to existing techniques.
The purpose of this experiment is to demonstrate the behaviour and abilities of the MERGE
module, and a more appropriate test of the AGGREGATE module would be one in which
predicted per-node features are used to guide training. However, this was not done in this
work for simplicity. An example output produced by the ”MERGE, MERGE, MERGE”
model is illustrated in Figure 2.

Readers may note that the images used in the synthetic dataset are tiny, at 8 by 8 pixels,
and that well-studied image segmentation datasets are available. The image size constrained
by the significant memory and computational requirements of the graph coalescing opera-
tions. For example, the equality matrix and adjacency matrix coalescing procedures each
have a cost of order (n3), where n is the number of nodes in the graph. But number of nodes
in an image graph is quadratic in the image’s side length, and thus the computational cost of
this method is quite dramatic at order O(l6) with respect to the image side length, l. It may
be possible to avoid this prohibitive overhead cost by using sparse matrix representations
and reducing redundancies, but this is made complicated by the need for gradients to flow
and the by tendency of some sparse matrix implementations to represent redundant nodes,
thus incurring a possibly even higher overhead in the worst case.
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Figure 2: An example output from the ”MERGE, MERGE, MERGE” segmentation model.
On the top row from left to right are the input image, its target adjacency matrix, and its
target equality matrix. On the bottom row are the learned node features with boundaries drawn
between adjacent non-equal nodes, as well as the predicted adjacency and equality matrices.

5.1 Personal Reflections

Early in my explorations towards this project, I was searching for a way to train a neural
network to perform arbitrary modifications on graphs, in order to be able to use them as a
general latent representation over fixed-length feature vectors. I spent much time exploring
ways to train networks to make discrete and non-differentiable decisions using a combination
of synthetic gradients and Monte-Carlo estimation of average gradients. This lends itself
nicely to dynamic auto-differentiation frameworks such as PyTorch, and early tests on dis-
crete classification problems were promising. However, it became increasingly unclear how
this would work with multiple subsequent discrete operations that choose different compu-
tational routes in a single network. In particular, it was very unclear how training would
disentangle choosing separate computational routes from the performance and parameteri-
zation of any single route. Furthermore, in the context of discrete graphs operations, it did
not seem possible to define loss functions characterizing the graph’s topological changes that
were differentiable. This led me to briefly look towards gradient-free optimization using evo-
lution, but I was not able to train networks to solve basic discrete problems such as sorting
a list. This led me to the more limited but fully-differentiable framework that is described
in this report. I have not been able to prove to myself that my earlier ideas on optimizing
discrete operations using synthetic gradients and Monte-Carlo sampling are impossible, and
so I would like to return to these ideas in the future. However, if I were to take this course
again, I would be more careful to clearly define the scope of my project early on and relate
it to similar working techniques, before starting possibly futile explorations. I would also
be more careful to determine whether I am asking networks to solve the label-switching
problem during training, which turned out to be the case on several occasions.

6 Conclusion

A graph neural network framework is presented that allows models to learn to reduce the
topology of graphs in a semantically meaningful way by implementing fully-differentiable
node merging operations. The framework allows individual nodes to be merged as part of
decision make while supporting conventional graph-based message-passing operations.
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