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ABSTRACT
Prototyping gesture recognition systems in a fast, reliable,
and cheap way can make HCI applications easier to develop
and more accessible. We present a simple system that com-
bines a 3D hand pose estimator and a speed-invariant gesture
recognizer. Our system allows for rapid prototyping of vision-
based hand gesture recognition software without the burden
of massive data collection.
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INTRODUCTION
Hands and their gestures are used extensively in communica-
tion between people, and can convey much additional infor-
mation about a person’s intentions and feelings. They present
a much more intuitive medium to communicate compared to
the conventional keyboard and mouse used in modern com-
puter interfaces which require a large amount of time to learn
and gain familiarity with. The expressive potential of hand
gestures is also clearly demonstrated by the viability of sign
language as a primary means of communication in humans.
Conceivably, gesture-driven computer interfaces could be as
effective as or more effective than existing mice and keyboards
for receiving user input.

Hand detection detection and pose estimation from a monoc-
ular image sequence has been explored with many unique
approaches over the past few decades [10]. Many previous
works of research employ highly specialized computer vision
algorithms, and while many of these are data-driven, most of
the existing literature predates the widespread use of convo-
lutional neural networks (CNNs) in computer vision which
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have become highly effective at object detection and extract-
ing high-level information from images. Thus, one of our
goals is to explore the use of CNNs as hand pose estimators in
monocular video-based gesture recognition.

The task of gesture recognition following hand detection has
also been investigated diversely using a variety of classifica-
tion and pattern-matching techniques. However, many of the
techniques in use for dynamic gesture recognition are difficult
to understand, implement, and train, and so we experiment
with a dynamic gesture recognition technique which is easier
in all of these regards.

Our main contributions are as follows. First, we present a sys-
tem that performs both static and dynamic gesture recognition
tasks. This is done by combining a 3D CNN-based hand pose
estimator with a simple dynamic gesture recognizer. Next, we
show that planar joint angles are viable features for dynamic
gesture recognition. Finally, we introduce a preprocessing
technique for static pose recognition that can correct for struc-
tured noise in the upstream pose estimator and greatly improve
its stability.

For qualitative results, we refer the reader to the project web-
site: https://sites.google.com/view/arpshand

RELATED WORK
Hand gesture recognition
Gesture recognition is by no means a new problem. Early work
in gesture-based interfaces focused on hand-crafted solutions
for classifying gestures [11, 2, 5]. Pattern matching methods
have also been researched such Dynamic Time Warping [14],
while many classical machine learning methods such as linear
classifiers, support vector machines, hidden Markov models,
recurrent neural networks and finite state machines [10]. In
the early 1990s, Rubine developed feature-based automatic
gesture recognition [12] as well as data-driven gesture recog-
nition [13]. Later, in 2007, Wobbrock et al. developed a robust
recognizer driven by examples, dubbed the $1 Recognizer [19].
Meanwhile, the development of hardware with hand-sensing
capabilities enabled gesture recognition in hand movements
[9]. More recently, classical vision-based techniques were
combined for real-time hand gesture recognition [3]. Our
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work borrows largely from the $1 Recognizer with modifica-
tions. Although the work cited here are mostly focused on
one- or two-dimensional time-series data, we will deal with
multi-dimensional input signal collected via 3D hand pose
estimation.

3D hand pose estimation
Work in reconstructing 3D hand pose from monocular RGB
images spans a few decades. Many techniques make use of
purpose-built computer vision pipelines and are data-driven
to vary extents. These methods include template-matching
with data augmentation [15] and with silhouette and motion
analysis [16], image brightness and motion estimation [5],
skin-colour segmentation with depth estimation [17] and with
edge detection [4], and dense trajectories [1].

As deep learning with artificial neural networks has gained
much traction, almost all recent methods leverage deep learn-
ing in the hand pose estimation domain [20, 6, 7]. Our interest
is in combining a 3D hand pose estimator with gesture recog-
nition techniques, and we elect to use a fairly primitive model
from [21] and investigate methods to supplement its perfor-
mance.

Rapid prototyping
Rapid prototyping emerged as a strategy to produce a viable
software product while optimizing the efficiency of the process
[18]. [18] argued that rapid prototyping may offer dramatic ad-
vantages in instructional context as well as industrial context.
Rapid prototyping has promising outlook in HCI applications.
For example, [19] listed rapid prototyping as the main moti-
vation behind the design of the $1 Recognizer. Our aim is to
extend this motivation to hand gesture recognition domain.

METHOD
From a high-level view our system takes a monocular RGB
video sequence as input, from which we extract 3D joint lo-
cations of the hand using a pre-trained CNN [21]. From this
sequence of multiple 3D coordinates, we perform basic feature
extraction. We then wait for a special static ’clutch’ pose to
appear which signifies the beginning of a dynamic gesture,
and begin recording a sequence which is then classified using
an adaptation of the $1 Recognizer [19].

Data Collection
We collect data from two different monocular RGB webcams1,
involving mainly two individuals. We capture videos of a
single left hand performing a single gesture, beginning from
the clutch pose. Hence, a data point in our dataset is a labeled
pair ({x1,x2, . . . ,x f },y), where {x1,x2, . . . ,x f } is the sequence
of f frames in the video (after downsampling the video at a
smaller framerate, i.e. choosing keeping one frame per every
3 frames, etc.) and y is the gesture label. For the purpose of
limiting the scope of this project, we elect to use a set of 6 la-
bels which are described shortly. An example for each gesture
label can be viewed on the project website. We collected only
a few videos for each gesture label.

1Dell XPS 13 9370’s build-in webcam and IPEVO Point 2 View USB
Document Camera

Name # of videos
Paper 3

Scissors 3
Thumbs-Up 3

OK 7
Call-Me 3

Let’s-Drink 3
Clutch 26

Table 1. Only a few videos are used for each gesture as a training exam-
ple, showcasing the $1 Recognizer’s viability in prototyping scenarios.

Gesture Labels
We use the following six gestures to demonstrate and test our
system.

• Paper All fingers are out-stretched and slightly splayed out.

• Scissors All fingers remain in a fist pose, except for the
pointer and middle fingers which are out-stretched and
slightly bent away from one another.

• Thumbs-Up All fingers remain in a fist pose, while the
thumb is out-stretched. Meanwhile, the hand is rotated to
point the thumb upwards.

• OK The thumb and pointer finger are half-extended and
their tips are brought together. The middle, ring, and pinky
fingers are extended fully and splayed out.

• Call-Me The thumb and pink are out-stretched, while the
other fingers remain in a fist pose. The palm is rotated away
from the camera, and the thumb is raised while the pinky is
lowered.

• Let’s-Drink The thumb and pink are out-stretched while all
other fingers stay lowered. The palm remains facing the
camera while it is rotated to lift the pinky while lowering
the thumb.

In addition to these dynamic gestures, we also defined a clutch
pose, which is used to segment the input signal during runtime.
A clutch pose can be defined as any configuration of the hand,
as long as the pose does not intersect with any of the dynamic
gestures significantly. In our implementation, we elect to use
the fully closed fist facing the camera (see Figure 2). We
record many videos of the clutch pose with varying hand root
orientations and joint angles in attempt to increase the accuracy
of the clutch detector.

3D Hand Pose Estimation
Zimmermann et al. [21] published a fairly primitive model that
takes an RGB image as input and predicts the 3D coordinates
of 16 keypoints of the left hand (consisting of 15 finger joints
and the base of the hand). We use their available software
package to extract the keypoint coordinates for each frame in
our dataset.

3D Coordinates to Planar Angles
We elect to use a single quantity to characterize the angle
defined by three consecutive joints in the hand. Given a triplet
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𝛉: joint angles

𝛗: pose of hand root

Figure 1. The feature vectors ψ and θ are extracted from the raw RGB frames (left) by using a 3D pose estimator, which estimates the coordinates of
the joints of the hand (center). We further transform these coordinates into the joint angles θ as well as the pose parameters of the hand root ψ .

Figure 2. The reference clutch pose. Bias correction is applied based on
the difference in overall hand orientation between the input pose and the
reference pose.

Corrector
𝛉

𝛗

r

𝛉*
Clutch Data

clutch_yes

Figure 3. A bias correction with residuals is applied to the joint an-
gles computed in Figure 1. We first compute the difference between
the reference clutch joint angles and current joint angles, Then, we fit
a model that predicts the difference based on the root pose and the cur-
rent joint angles. The corrected joint angles vector is compared against
the database of clutch joint angles to determine whether a given video
input contains a clutch pose.

𝛉1, 𝛉2, ...

𝛗1, 𝛗2, ...

$1

y

Figure 4. The $1 Recognizer takes a feature sequence
(ψ1,θ1),(ψ2,θ2), · · ·) as input and classifies the input sequence
into a gesture label y.

of 3D coordinates (p1, p2, p3), we compute

u =
p1− p2

||p1− p2||
(1)

v =
p3− p2

||p3− p2||
(2)

θ = arccos〈u,v〉 (3)

where 〈u,v〉 is the dot product between the two 3-dimensional
vectors. This angle θ is the angular displacement between
p1 and p3 after treating p2 as the origin, assuming (albeit
naïvely) that the angular displacement happens along a single
axis of rotation, which is orthogonal to the plane containing
the three points. Hence, we call the angle θ a planar angle.
We iterate through all triplets defined by consecutive keypoints
of the Zimmerman model, extracting 15 joint angles in total.
This provides a reduction from 45 original features (one xyz-
coordinate per joint), and yields what we consider to be a more
intuitive set of features, while the reduction in complexity
helps to prevent over-fitting.

Residual Correction
The Zimmermann model’s predictions are very sensitive to
the orientation of the hand, such that the exact same joint
configurations end up producing significantly different relative
coordinates coordinates depending on whether the hand is
rotated away from the camera. This is an issue especially for
clutch detection, where slight rotations of the hands might
completely throw off the gesture recognition performance.
We observe that there is a hidden but structured relationship
between the output coordinates and the input pose, and we
elect to use a simple machine learning model to account for
this artifact. The top potion of Figure 3 shows an abstract
view of the bias corrector model (dubbed Corrector). Let
the angle (θre f ) be the joint angles representing the reference
clutch pose shown in Figure 2. For each pose (ψi,θi), where
i ∈ 1,2, · · · ,nclutch with nclutch representing number of frames
labeled as clutch, we generate the ground truth residue ri:

ri = θre f −θi. (4)

This simple equation establishes that θre f = θi + ri. After
generating the residues corresponding to all frames labeled as
clutch, we fit a predictor f̂ that minimizes

L =
nclutch

∑
i=1

1
2
( f̂ (θi,ψi)− ri)

2 +
1
2
||v||2 (5)
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where v is the parameters of the predictor f̂ . Consequently, for
an input pose (ψ̃, θ̃), we can compute the estimated residual r̃
with respect to the reference clutch pose:

r̃ = f̂ (ψ̃, θ̃). (6)

Then, as established earlier, the estimated pose after the resid-
ual correction is simply

θ̃
∗ = θ̃ + r̃. (7)

Given that the input pose (ψ̃, θ̃) is within the distribution of the
clutch poses in the training data, the corrected joint angles θ̃ ∗

should resemble the reference joint angles θre f . Then using θ̃ ∗

as the features for clutch detection makes the detection robust
to the differing hand root orientations. Figure 5 shows the
effect of the residual correction in clutch poses with varying
hand root orientations.

Clutch Detection
We segment the input stream of video by running clutch de-
tection at every frame. This detection is a test of whether the
given input pose (ψ̃, θ̃) is within the distribution of the clutch
pose data compiled by the user. We use a non-parametric
method to detect the clutch pose. Notably, our method does
not require negative examples and hence lifts the burden of
labeling positive and negative examples in the training data.

We use the trained residual corrector to compute the corrected
joint angles θ ∗i for every frame labeled as clutch (see Equation
7). We note that we are reusing the training set to generate
these corrected joint angles, but as our task is to test whether a
new data point is within the distribution of the training data, we
argue that this is not a violation of the Golden Rule of Machine
Learning. We use the L 1

2
-distance between the corrected input

joint angle θ̃ ∗ and its nearest neighbor in the clutch dataset,
and apply a threshold to declare whether a clutch is detected.
More formally, we compute the distance

D(ψ̃, θ̃) = min
i

(
d

∑
j=1

(
θ
∗
i j−

[
θ̃ j + f̂ (ψ̃, θ̃) j

]) 1
2

)2

(8)

where d is the number of joint angles (15 in the case of planar
angles), and with some threshold T , declare

is_clutch(ψ̃, θ̃) =

{
1 if D(ψ̃, θ̃)≤ T
0 otherwise.

(9)

We experimentally determine a good value for T . The bottom
half of Figure 3 illustrates this distance-based detection.

Gesture Recognition
Recognition of dynamic gestures is a difficult task, but we
simplify the problem by applying some restrictions. Firstly,
because we rely on the clutch pose to delimit gestures, we do
not need to segment gestures in time. Secondly, we restrict
ourselves to gestures which do not contain a variable number
of repeating motions. These two constraints allow us to use an
implementation the $1 Recognizer introduced by Wobbrock
et al. [19] with some modifications to its pre-processing and
classification routines.

In summary, the $1 Recognizer as presented by Wobbrock et
al consists of a number of feature transformations and prepro-
cessing steps, followed by a very simple nearest-neighbour
classification. The $1 Recognizer takes an arbitrary-length
sequence of points in 2D space representing a path. This path
is uniformly resampled to a fixed length, which discards speed
and timing information but allows more intuitive comparison
between paths. Next, the path is rotated to a standard con-
figuration, then translated and scaled to fit perfectly inside a
unit square. These transformations are applied to all training
examples, and at test time, the 1$ Classifier simply chooses
the label of the training gesture with the smallest distance to
the test gesture. Here, the distance between paths is defined as
the average L2 distance between corresponding points in both
paths

Figure 4 illustrates an abstract view of the gesture recognition
model. Unlike the original $1 Recognizer, our gestures consist
of sequences of points in a high-dimensional space rather than
the two-dimensional space of pen-tablet drawings. Like the
original $1 Recognizer, we resample this input sequence at
uniform speed to yield a mono-spaced sequence with equal
distance between all neighbouring pairs of points. However,
we do not rotate, translate, or scale the gesture path, and our
reasoning for this is as follows. We omit the rotation step de-
scribed in the original algorithm because it is not meaningful
in our high-dimensional space consisting of angles, whereas
this is easily understood in the original 2D Euclidean space.
We omit the translation step because this would discard infor-
mation about the absolute position of each angle, and would
cause our system to confuse gestures where the fingers are at
completely different angles. We omit the scaling step because
it is likely to cause degenerate behavior, namely when a ges-
ture has extremely little variance along one axis, which causes
division by an arbitrarily small number and can drastically
amplify noise or cause division by zero. In the original $1
Recognizer, this is only a problem when the gesture appears
to be a straight line which is relatively uncommon and easy to
spot and avoid, but in our high-dimensional space, it is highly
likely that the angles of one or more finger joints are staying
very still throughout the gesture.

We also modify the classification algorithm of the $1 Recog-
nizer. Instead of the L2-norm used in the original implementa-
tion, we use the L 1

2
norm because it favours small differences,

and we experimentally found that this improved classification
accuracy. Additionally, because we have omitted the scaling
step, we simply return the averaged L f rac12 distance instead
of the original confidence measure which relies on precondi-
tions established by the scaling step.

At training time, we simply resample each of the labeled
training gestures and persist them, thus retaining the non-
parametric nature of the original implementation. At test
time, we compute the distance between a novel gesture and
all known gesture, then choose the label of that training ges-
ture which minimizes the distance between itself and the new
gesture. Like the original implementation, this is effectively a
k-nearest neighbours classifier with k = 1.

4



Figure 5. Image: the raw frame input of the clutch pose with a different hand root orientation than the reference clutch pose (Figure 2). First
row: extracting planar angles from the image, a very different pattern in joint angles emerges although the only difference should be the hand root
orientation. Second row: estimated residuals with respect to the reference clutch are computed as per Equation 7. Third row: after adding the residuals,
the corrected joint angles are very stable and mostly invariant to the hand root orientation. Fourth row: the hand root orientations, in conjunction with
the corrected joint angles, now parametrize the input clutch pose. Full video on the project website. Best viewed in color.

The resulting classifier performs very well with extremely few
positive examples and no negative examples at all (although
it does not attempt to classify an input sequence as a non-
gesture), and relearning is as trivial as storing an additional
gesture. If, during test time, a user is dissatisfied with an incor-
rect classification made by our $1 implementation, they can
simply take the gesture they have just performed and instruct
the classifier to learn it with the desired label. These capabil-
ities, in addition to the simple implementation, demonstrate
how our system encourages rapid prototyping.

State Machine
During user interaction, our system waits for the user’s hand
to appear making the clutch pose. Then it begins recording
the user’s hand pose and continuously attempts to classify the
motion as a known gesture. After a successful classification
or if the hand disappears from view at any time, the system
resumes waiting idly. We implement this workflow using a
state machine.

Our state machine begins in the Wait state where it remains
idle. If at any time the hand is not detected, we return to this
state. If during this state we detect the clutch pose as described
earlier, we enter the Clutch state. To proceed from the Clutch
state, we wait for the clutch pose to no longer be detected,
at which point we transition to the Record state. Effectively,
the user must begin and end the clutch pose before we begin
recording.

Once we enter the Record state, we create an empty array of
poses, and append the current hand pose to this array during
each frame. As soon as the clutch pose is detected once more,
we consider the gesture to have ended, and we transition to
the Classify state. In the Classify state, we simply take the list
of poses generated by the previous Record state and classify
it using our adapted implementation of the 1$ Recognizer
described earlier. It is at this point that the label may be passed
as a notification or event to an external system that wants
to use our gesture recognition. In our proof-of-concept, this
system was simply a text label shown to the user, but the
detected gesture could be used for a large variety of tasks such

as navigating a user interface or interacting with a personal
assistant. Finally, we return to the default Wait state and the
process starts over.

Wait Clutch

RecordNo 
hand

Classify

*

Detect clutch

Escape clutch

Detect clutch

Hand detected

Figure 6. A simplified representation of the state machine we build to
demonstrate the prototyping capabilities of our method. Clutch pose
clearly marks the start and the end of a gesture window. At any time, if
the 3D hand pose estimator fails to detect a hand, the machine faults to
the No hand state which cancels all the parsing processes.

RESULTS
We evaluate our system manually by performing gestures in
a randomized order and observing the system’s behavior in-
teractively. In poor lighting conditions and without careful
movements, clutch detection and gesture classification suffer.
Under reasonable lighting conditions and with some care taken
to perform the gestures clearly and slowly, we achieve correct
predictions a majority of the time. We achieve a high rate
of correct labels when performing the Scissors, Paper, and
Thumbs-Up gestures. Occasional ambiguity remains between
the Paper and OK gestures. Notably, our implementation is
able to distinguish between the Call-Me and Let’s-Drink ges-
tures, even though these are identical hand poses with different
orientations and motions. For demonstrations of our system in
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use, we direct users to the animated figures on the project web-
site (link) which show a variety of gestures being classified
in real-time after making a clutch pose. Unfortunately, we do
not have quantitative results to illustrate the accuracy of our
system.

CONCLUSION
We presented a system that can enable a rapid prototyping of
real-time hand gesture recognition applications. As the qualita-
tive results show, our system works well with very few training
examples and can disambiguate gestures via motion, rather
than simply classifying static poses. The clutch detection
method is able to reliably distinguish clutch and non-clutch
poses, even without the negative examples presented during
training time. Our system is robust to the limb lengths of dif-
ferent users and varying lengths of the input sequences, which
makes it a viable system for cross-user scenarios. Moreover,
if the 3D hand pose estimator is running on a GPU-enabled
server, the edge device does not need to have a GPU computing
capacity.

Limitations and Future Work
We earlier noted that the upstream model published by Zim-
mermann et al. [21] is a relatively primitive model. The
3D hand pose estimator’s performance is a major bottleneck
in the system in practice. The Zimmermann model is espe-
cially sensitive to illumination, exposure, blurs, and many
other factors, which makes the overall performance of the ges-
ture recognition system unstable. Replacing the model with
a more performant model, such as GANerated hands [8] or
more recent hand pose estimators could alleviate this issue.

We also note that our recognition system depends on a manual
segmentation via clutch pose. For each input gesture, the user
must begin with a clutch and then end with a clutch in order
to classify. Although it is possible in principle to use clutch
only to mark the start of a signal sequence and produce on-
line predictions in real time, we are unable to perform online
predictions with the current implementation of the $1 Rec-
ognizer. Consequently, we are unable to use our system in
conjunction with periodic gestures or unsegmented sequences
of gestures. Using more sophisticated dynamic models such as
hidden Markov models (HMM) or recurrent neural networks
(RNN) could introduce online prediction capabilities, although
implementing these models requires more development effort
than the $1 Recognizer, as well as far more training data.

To further develop and improve the accuracy of our system,
it would be useful to have a formalized test process, ideally
involving datasets of multiple users performing multiple ges-
tures, for the purposes validation and testing, so that we may
more objectively determine the effectiveness of our techniques
and to perform rigorous ablation studies.
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