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Abstract

Navigating and sensing the world through echolocation in air is an innate abil-

ity in many animals for which analogous human technologies remain rudimen-

tary. Many engineered approaches to acoustic reconstruction have been devised

which typically require unwieldy equipment and a lengthy measurement process,

and are largely not applicable in air or in everyday human environments. Recent

learning-based approaches to single-emission in-air acoustic reconstruction use

simplified hardware and an experimentally-acquired dataset of echoes and the ge-

ometry that produced them to train models to predict novel geometry from similar

but previously-unheard echoes. However, these learned approaches use spatially-

dense representations and attempt to predict an entire scene all at once. Doing so

requires a tremendous abundance of training examples in order to learn a model

that generalizes, which leaves these techniques vulnerable to over-fitting.

We introduce an implicit representation for learned in-air acoustic reconstruc-

tion inspired by synthetic aperture focusing techniques. Our method trains a neural

network to relate the coherency of multiple spatially-separated echo signals, after

accounting for the expected time-of-flight along a straight-line path, to the pres-

ence or absence of an acoustically reflective object at any sampling location. Ad-

ditionally, we use signed distance fields to represent geometric predictions which

provide a better-behaved training signal and allow for efficient 3D rendering. Us-

ing acoustic wave simulation, we show that our method yields better generalization

and behaves more intuitively than competing methods while requiring only a small

fraction of the amount of training data.
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Lay Summary

Many acoustic imaging systems in medicine and marine exploration produce ul-

trasound and process the returning echoes to infer what objects are located nearby,

but these require complex hardware. Recently, attempts have been made to produce

similar visualizations in air using minimal hardware and machine learning instead

of conventional algorithms to produce 3D images. However, existing learning-

based approaches try to learn entire scenes at once, which requires a large amount

of training data. Instead, we use concepts from conventional acoustic imaging and

focus only on individual points in space. We train a neural network to estimate the

distance to the nearest obstacle at a single point using only audio signals aligned

by the expected round-trip time of a wave to and from that point. We show that

this implicit formulation leads to better interpolation and extrapolation and requires

less training data than models which predict entire scenes at once.
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Chapter 1

Introduction

The physical world around us can convey enormous amounts of information simply

through the acoustic echoes it produces in response to emitted sounds. This is made

clear by the fact that many animals, such as bats, cetaceans, and even some humans

[23, 49], are able to localize themselves and navigate by producing sound and

listening to the echoes returning from their surroundings. Thus, there is potential

to be able to infer spatial information from acoustic echoes using technology for

localization and geometric reconstruction.

Compared to optical vision, sound presents a comparable but distinct modal-

ity for sensing the environment. Sound is reflected and absorbed differently by

materials compared to light, and thus can yield novel information about the phys-

ical properties of nearby objects. Notably, sound interacts primarily with changes

in density of the media it passes through, unlike light, which has far more com-

plex interactions [3]. Sound also travels slowly enough for its time of flight to

be easily measured, which allows for accurate distance information to be obtained

with simple sensing techniques. Furthermore, while both light and sound may be

absorbed, reflected, and refracted by objects due to wave phenomena, the wave-

lengths of sound are much larger than those of light, and diffraction phenomena

become relevant at macroscopic scales. According to the Rayleigh criterion,

θ ≈ 1.22
λ

D
, (1.1)
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the angular resolution θ of a wave-based sensor is limited by the wavelength λ

being used as well as the width of the aperture D. For example, an acoustic device

with a 30 centimeter aperture working at 40 kHz can theoretically achieve an an-

gular resolution of 0.035 radians, or about 3.5 centimeters at a 1 meter distance.

While this is indeed a limitation, it can also be a benefit in human environments

because it means that acoustic sensing devices can offer privacy by construction

while still yielding useful spatial information - for example, the presence but not

the identity of a person nearby. Additionally, the privacy guarantees due to the

wavelengths used by an active ultrasonic sensing device can be verified by an end

user using an ultrasonic microphone.

In medical contexts, ultrasonic imaging techniques are widely used to non-

invasively study developing fetuses and internal organs. The speed of sound in

human tissue is about 4.7 times faster than in air [43], which permits faster re-

peated measurements of the target sample, which in turn enables scanning-based

approaches. Typical medical ultrasounds form images one line at a time by fo-

cusing waves and iteratively scanning the subject [12]. The spatial and temporal

resolution that can be obtained in this way is limited by the speed of sound and the

spatial extent of the region of interested being scanned. Given the slower speed of

sound in air, and given that typical indoor environments are many orders of mag-

nitude larger than the regions being examined by medical ultrasounds, the same

scanning techniques simply would be far slower in air, and would be unable to

achieve interactive frame rates in human environments.

Rather than carefully focusing sound waves and scanning in multiple directions

sequentially, it also feasible to perform acoustic imaging with unfocused spheri-

cal waves by combining signals from multiple spatially-separated receivers and/or

transmitters, using a family of techniques known as synthetic aperture methods.

Instead of focusing waves through a single large aperture, a synthetic aperture uses

multiple smaller sensors to gather waves at points scattered across a similar spatial

extent. By recombining information from each point, the same angular resolution

can be achieved as if one had used a single aperture of the same total size.

In medicine, synthetic aperture ultrasound (SAU) [7, 20, 32, 48] gathers return-

ing echoes from all directions simultaneously, rather than one line at a time, and
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uses software processing to disentangle individual reflections. To create an acous-

tic image, SAU sums the signal contributions of all echoes after accounting for

the expected time delay between every combination of emitter, receiver, and point

in the image. The result is that reflections due to true inhomogeneities become

pronounced, while false reflections and noise are made unlikely due to destruc-

tive interference. The expected signal-to-noise ratio (SNR) thus improves steadily

with the number of receiving and transmitting elements employed by the hardware,

with typical medical devices using 64, 128, or 256 elements in total [20, 40, 48].

Conversely, one would expect the imaging quality of SAU without additional con-

siderations to seriously deteriorate when using relatively few elements.

SAU is able to achieve higher quality images than scanning approaches using

the same hardware, at the cost of additional data post-processing. Additionally,

by avoiding the scanning process, synthetic aperture techniques can achieve higher

frame rates, and they offer an important path toward in-air acoustic imaging at

interactive speeds. Conventional SAU relies on multiple sequential acoustic emis-

sions, as the redundancy offers better estimates in the presence of noise [4, 39].

In medical imaging, where the speed of sound is high and regions of interest are

small, these improvements are worth the negligible increase in latency. However,

in air and at larger scales, far more time is spent waiting for echoes to return, and

as a result, relying on repeated measurements causes a significant drop in imaging

speed.

In underwater exploration, where the speed of sound is similar to that of hu-

man tissue but the sizes of the regions of interest are on the order of many me-

ters, the additional time cost of multiple emitted sounds due to the longer wave

travel time means that they simply cannot be used for interactive applications, and

scanning-based and iterative approaches are not viable [6]. Instead, underwater

imaging systems typically use a single, unfocused acoustic emission whose echoes

are recorded by a large planar array of omnidirectional receivers, and synthetic

aperture focusing allows the same ensemble of acoustic recordings to be re-used

for each viewing direction. As with SAU, underwater acoustic imaging temporally

aligns all received signals with their expected time of arrival at a given point in

the image to estimate the reflectivity at that point. However, in order to make de-

3



tailed three-dimensional images with conventional algorithms, a large abundance

of acoustic receivers is needed, which increases the cost of both the hardware and

the computation needed for visualization. Modern systems often use several hun-

dred receivers, which increases resolution and reduces noise due to random wave

interference, but which also introduces further design challenges, such as optimiz-

ing the spatial arrangement of the receivers and devising scalable algorithms which

can efficiently handle such a volume of data [6, 53]. Given the large number of re-

ceivers, and that underwater acoustic imaging systems operate at frequencies in

the hundreds of kilohertz, one would expect that the same algorithms would fail to

produce meaningful visualizations at common in-air ultrasound frequencies such

as 20 to 40 kHz, and with a minimal number of receivers. Instead, one would need

algorithms which are better able to remove speckle artefacts and robustly reason

about the presence of reflectors with far less information.

Imaging using a single acoustic emission hypothetically achieves the fastest

possible frame rates but has not found much use in air, likely due to severe losses

of accuracy that traditional methods encounter, since these methods generally use

redundancy to overcome ambiguity, be it with an abundance of receivers, emitters,

sensing iterations, or combinations thereof. With conventional algorithms, in-air

acoustic imaging has to the author’s knowledge only been demonstrated with iter-

ative techniques requiring a lengthy capture process and static scenes [3, 25].

Recently, learning-based approaches have begun to demonstrate acoustic imag-

ing using single emissions, and machine learning may offer a viable alternative

to preexisting wave-based imaging techniques [8, 9, 16, 21]. Where algorithmic

methods for acoustic imaging suffer due to their reliance on repeated measure-

ments to handle challenging and non-obvious wave interactions, machine learning

side-steps the need to explicitly model complex physical phenomena, and is able to

specialize in common scenarios. If designed correctly, a learning-based approach

can efficiently extract pertinent information from the acoustic echoes it receives

and predict the most likely geometry according to a trained model. But the use

of machine learning introduces unique challenges as well, such as the need for

representative training data and the danger of over-fitting. Before learning-based

approaches to acoustic imaging can be practically adopted, their behaviours and
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limitations across diverse scenarios and their shortcomings must be well under-

stood.

Existing machine learning methods for acoustic reconstruction use a convolu-

tional neural network to learn to predict entire scenes at once in a dense represen-

tation, such as a three-dimensional occupancy map or two-dimensional depthmap,

from a single multi-channel acoustic recording [8, 9, 16, 21]. While neural net-

works are able to generalize well when given a sufficient amount of training exam-

ples, the use of dense representations means that the models must learn to disen-

tangle the myriad interactions between all points in the input audio and the output

geometry. When collecting a dataset, the practical infeasibility of capturing all

possible examples of geometric configurations means that models must either be

capable of meaningfully interpolating and extrapolating from the data they have

been shown or else risk over-fitting, producing meaningless results on previously-

unseen examples after focusing too heavily on limited training data.

In order to map from the time domain of an acoustic echo to the spatial domain

needed for estimating geometry, some manner of spatiotemporal conversion must

be performed during acoustic reconstruction. While convolutional neural networks

are translation-invariant, existing neural architectures for acoustic reconstruction

follow a modular design consisting of a temporal acoustic encoder and spatial ge-

ometric decoder, with information passing between the two using only the hidden

feature dimensions [8, 9, 16, 21]. As a consequence, the spatiotemporal conversion

is performed only by the network’s hidden activations where it is difficult to reason

about.

Due to the difficulties in learned acoustic reconstruction of gathering a suffi-

ciently large dataset for learning combined with the needs of existing convolutional

neural networks for an enormous variety of training examples, we suggest that a

different approach is needed. In particular, the use of a dense representation—

training a neural network to map from an entire audio recording to an entire geo-

metric scene—is not necessary. Implicit function neural networks have shown that

geometric representations can instead be learned one point at a time, by providing

spatial coordinates as inputs and making scalar predictions [30, 33, 41]. It would

be possible to train an implicit neural network for acoustic reconstruction by pro-

viding both the recorded echoes and the coordinates of a desired spatial location as
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inputs. However, by explicitly providing spatial information to the network, it may

easily learn to give different treatment to different regions of space and thereby

over-fit. Alternatively, one may provide the network only with sounds that have

been pre-processed with respect to a given sampling location. Synthetic aperture

focusing as used in non-learned acoustic imaging methods is such a process, and

provides an input signal that is clearly rich in information. Importantly, aligning

incoming echoes in time according to the travel time of a wave to and from an

individual point in space performs a simple spatiotemporal conversion, allowing

a network trained in this representation to specialize purely on the largely local

relationship of such time-aligned audio signals with individual geometric details.

In this work, we explore the viability of end-to-end learned in-air acoustic re-

construction using close to the minimum viable amount of sensing hardware and

experimental measurements, namely a single acoustic emitter, a small number of

acoustic receivers, and a single acoustic emission whose echo is recorded simulta-

neously across all receivers. We achieve this using an implicit representation based

on synthetic aperture focusing that directly relates the distance to the nearest re-

flector at a given point with the echo heard by all signals after aligning them by the

expected delay due to the in-air time-of-flight. We use an acoustic wave simula-

tion to generate a large dataset of randomly-placed obstacles and the echoes they

produce, and we use this dataset to train a neural network to relate time-shifted

echo signals to the geometry in the region of interest. Although we do not expect

our trained neural networks and dataset to be immediately transferable to a physi-

cal realization, our technique is readily applicable in the physical world, provided

that training data is available. In our explorations, the use of computer simulation

enables rapid prototyping and allows for greater experimental control and fidelity,

and is commonly used in the literature [3, 7, 19, 26, 32, 45–48, 57]. We evaluate

our methods and compare them to competing learning-based approaches using a

variety of experiments. We explore the robustness of our technique and provide

commentary on a hypothetical physical implementation of our system.
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Chapter 2

Related Work

Acoustic and wave-based imaging and reconstruction has a rich history spanning

many fields. In medicine, ultrasonic imaging is widely used to non-invasively study

internal organs at interactive speeds. In underwater acoustic imaging, similar tech-

niques are used at a larger scale to aid in underwater operations and exploration.

In robotics, acoustic sensing has been used to measure distances, establish land-

marks, and to classify parts of the environment surrounding a robotic agent to aid

in mapping and navigation. In seismology, wave-based sensing has been success-

fully applied to measure the composition and geometry of solid and subterranean

structures. Between these fields, many useful developments to wave-based sensing

have been made in signal processing techniques, geometric ray-based and wave-

based modeling, synthetic aperture methods, migration methods, signal design, and

more. Only recently have researchers turned to machine learning using end-to-end

differentiable neural networks to solve acoustic reconstruction in a data-driven,

example-based manner. For complex reconstructions, the amount of data needed

to learn a generalized model becomes prohibitive in practice, motivating the need

for carefully-chosen data representations and the application of domain-specific

knowledge. For greater experimental control, some researchers turn to numeric

simulation of physical wave interactions, and this demand has led to the develop-

ment of sophisticated software for simulating wave propagation. In the following

sections, we provide a summary of the relevant methodologies and findings across

these areas.
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2.1 Delay-and-Sum Methods
A simple technique for wave-based imaging that has found use in numerous do-

mains is the delay-and-sum method, in which an image is formed point-by-point

from an array of wave recordings. The reflectivity of each point in the medium is

estimated as follows. First, assuming a constant speed of sound, the time of flight

a wave would take to travel to and from the imaging location and each emitter and

receiver pair is computed. This time delay is then used to synthetically focus the

recorded waveforms, temporally aligning them with the expected wavefront due to

a reflector at the present location. The focused waveforms are then summed and

the resulting signal strength is the estimated reflectivity of that point as a fraction

of the emitted signal’s strength [3, 20, 48].

Conventional medical ultrasonic imaging uses a large array of acoustic ele-

ments that act as both emitters and receivers to capture each line of an image se-

quentially, in what is commonly referred to as a B-mode or B-scan image. Either

a physical lens or beamforming is used to create a focused and directional pulsed

ray of sound that passes into the target medium and whose returning echoes are

recorded. The timing of each arriving echo is used to infer the total distance trav-

elled and thereby the depth at which the wave was reflected. By repeating this

line-based sensing many times across a range of directions, a two-dimensional im-

age is obtained [38].

Burckhardt et al. first applied synthetic aperture techniques to acoustic sens-

ing for medical applications, embracing spherical wave propagation and data post-

processing to generate an acoustic image [5]. Their system uses optics rather than

a digital computer to synthesize images, and is able to distinguish small reflectors

at close range.

Corl et al. as well as Bennett et al. later refined these ideas and applied com-

putational methods for producing images, albeit for nondestructive testing of solid

materials, using an array of 32 elements [1, 10]. Their systems record the echoes

received by an array of receivers after a controlled sound is emitted. An image is

then formed point-by-point by delaying each received signal according to the ex-

pected round-trip time for wave hitting a deflector at the imaging point, and then

summing the contributions of all signals.
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Lockwood et al. explore the use of few and sparse acoustic elements to al-

low for more rapid imaging using similar synthetic focusing [27]. The faster two-

dimensional imaging times allow the technique to be repeated while mechanically

scanning the sensing device to create three-dimensional images.

Nikolov et al. measure the effect of coding schemes, which use recognizable

patterns of acoustic elements in parallel, on the quality of images, finding that the

increased complexity yields diminishing returns on imaging quality [32]. However,

the use of an FM chirp as the emitted signal was found to yield a better SNR over

comparably simple signals, regardless of the number of acoustic elements in use.

Later with the development of more sophisticated computational hardware,

Jensen et al. demonstrate synthetic aperture ultrasonic imaging using an array

of 64 elements operating at 5 MHz, and show that the use of synthetic focusing

by means of simple weighted summations leads to faster and higher-quality im-

ages than B-scan images with beam-forming under an otherwise equivalent set-

ting. Synthetic focusing in Jensen et al.’s work may be understood in terms of the

closely-related synthetic aperture focusing technique (SAFT) [24] and is achieved

in parallel for each point in the imaging plane by means of an apodization function

which attenuates all received signals except those near the expected time-of-flight

of an echo due to a deflector at the current image location. The same SAU tech-

niques were further refined by modeling the angular distribution of wave energy

from each acoustic emitter, in contrast to the implicit spherical wave assumption

made by Jensen et al, and achieve further improvements in image quality [48].

In underwater settings, delay-and-sum methods closely related to those in SAU

are commonly used in active acoustic sensing to create 3D visualizations of the

environment from a 2D sensing aperture. Notably, the demand for interactive vi-

sualizations that can facilitate underwater exploration means that high frame rates

are prioritized, and modern underwater acoustic imaging systems rely only a single

acoustic emission and use a large array containing hundreds of acoustic receivers

[6, 31]. A typical modern system uses the delay-and-sum technique, temporally

aligning the signals from all receivers according to the time of flight to a single

point in the space being imaged, in order to estimate the reflectivity of that point

[31]. The abundance of data that must be processed to create a single visualization
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in this way - at frequencies in the hundreds of kilohertz, with hundreds of receivers

and for many thousands of imaging points - means that special attention is paid to

efficient algorithms which can yield results at interactive rates [6]. Additionally,

the large number of sensors needed for practical visualizations can be placed into

diverse arrangements which greatly affects the resolution due to diffraction arte-

facts [6, 31]. Finally, whereas 2D visualizations can be displayed directly, the 3D

reflectivity data produced by underwater acoustic imaging systems must be further

processed to be displayed to a user, for example by estimating the boundaries of

objects and rendering these as 3D surfaces [31].

2.2 Migration Methods
In seismology, migration methods have been used in imaging underground struc-

tures to correct for differences in reflection arrival time due to inconsistent speeds

of sound in order to create visualizations that are better spatially-aligned to the

ground truth 1. In some applications, migration bears close resemblance to syn-

thetic aperture focusing techniques as used in acoustic imaging, though alternative

techniques exist which are capable of correcting spatial distortions due to media

with varying densities, or which use a frequency domain representation rather than

the purely temporal approach of SAU.

Loewenthal et al. demonstrated the use of migration on two-dimensional wave-

based scans of seismic media to relocate visualized features to have a direct spatial

correspondence with the physical structures being measured [28]. However, their

work relied on a simplified wave model that only considers waves traveling to or

from the receiver and disregards angle-dependent reflections. Kosloff et al. show

how to overcome this and faithfully model the acoustic wave equation in migra-

tion techniques. Stolt et al. adapted wave migration from the spatial domain to the

frequency-wavenumber (f-k) domain, showing improved coherence and fewer arte-

facts while providing a theoretical starting point for efficient migration techniques

in three dimensions [44].

Trad et al. combine the use of the apex shifted radon transform (ASRT), which,

like other methods, computes the sum of returned signals after accounting for

1or ground truth, as it were
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round-trip delay, with least-squares optimization to provide better support for mul-

tiple spatially-distributed deflectors [50].

Ibrahim et al. devise a technique derived from both the ASRT and Stolt’s f-k

migration that separates seismic wave deflectors using numeric minimization [17].

Similarly, Garcia et al. apply Stolt’s f-k migration to medical ultrasound imaging,

using a planar rather than a spherical emitted pulse, achieving improved results

over simpler delay-and-sum techniques used in other ultrasonic imaging [13].

2.3 Optical Reconstruction
With sound waves, the time of flight can easily be measured which enables many

classes of algorithms for wave-based imaging. While the speed of traveling light

waves is much harder to resolve, recent advances in optical hardware have enabled

measuring the arrival times of individual light reflections, and this allows the use of

3D reconstruction algorithms similar to those used in acoustic and seismic imaging,

as well as closely related synthetic aperture techniques such as back-projection.

Velten et al. demonstrated the use of a streak camera that records the spatiotem-

poral impulse response of a hidden scene after being struck by a laser pulse, and use

a back-projection algorithm to reconstruct an approximation of the occluded geom-

etry in three dimensions [55]. Notably, their system can only resolve one spatial

direction during image capture because it must use one imaging axis effectively as

the temporal dimension. Detailed reconstructions require iterated measurements

with laser pulses at different locations, with around 60 repetitions reportedly in use

in their experiments. This work was extended by Heide et al. to use a photonic

mixer device (PMD) as the time-of-flight camera, using an optimization framework

on top of a physically-based imaging model, which resulted in the ability to dis-

entangle geometry from materials at the cost of increased computational burden.

With the introduction of single photon avalanche diode (SPAD) cameras, Buttafava

et al. were able to adapt the computationally cheaper back-projection techniques of

Velten et al., with a total of 185 imaging iterations at differing laser pulse locations.

Turning to numeric simulation and deep learning, Su et al. skip some of the

signal pre-processing of time-of-flight cameras and instead train a neural network

that is able to produce higher-quality geometric reconstructions than those of con-
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ventional algorithms alone. Training data is created using a light transport simula-

tion that explicitly models the optical time of flight. Though it is unclear whether

the choice of training examples lead to a truly generalized model compared to a

classical approach, the resulting imaging system is able to produce improved re-

constructions on real-world data in typical indoor environments.

Drawing upon migration methods previously used in seismology, Lindell et

al. adapt Stolt’s f-k migration method to optical non-line of sight reconstruction,

rather than using the backprojection technique of Velten et al., in similar set of

experiments with pulsed lasers and a time-resolved SPAD camera [26], leading to

improved reconstructions but with up to 256 iterations with different laser pulse

locations. A numeric simulation of time-resolve light transport is also used to

validate the technique with increased experimental control.

Relying entirely on simulation to solve optical non-line-of-sight reconstruc-

tion, Iseringhausen et al. propose a highly optimized time-resolved light transport

simulation which is used in the inner loop of an optimization algorithm that seeks

a simple geometric reconstruction whose simulated spatiotemporal light impulse

response best matches the observed data [19]. The underlying geometric represen-

tation consists of the level set of a sum of Gaussian functions which acts as a strong

spatial regularizer, leading to much smoother and simpler reconstructions than the

noisy volumetric image data given by back-projection.

2.4 Acoustic Reconstruction
Using between 4 and 16 acoustic elements, Wykes et al. compute the time de-

lay of arrival of ultrasonic echoes of small objects in response to emitted signals

and compute the positions of the reflectors using triangulation [58], in a technique

reminiscent of that used in synthetic aperture ultrasound. Using bat echolocation as

inspiration, Matsuo et al. use only a single emitted FM chirp and binaural audio to

classify and localize multiple reflecting objects, relying on the time delay of arrival

for localization and the spectral characteristics of each reflector to disentangle the

multiple overlapping echoes. Also using the bat as an example, Steckel et al., in

their BatSLAM work, construct a biomimetic sonar device that is similarly able to

classify and localize echoes by their time delay and spectral qualities respectively,
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in order to perform acoustic simultaneous localization and mapping (SLAM) in an

indoor environment [42]. Eliakim et al developed the RoBat system, additionally

classify obstacles in the environment by their echoes as one of two categories using

a neural network.

Borrowing techniques from optical imaging, Lindell et al. use an array of

16 receivers and 16 microphones scanning across 32 unique positions, emitting

FM chirps to capture echoes of hidden objects, followed by computational recon-

struction using the Light Cone Transform with several additional processing steps,

resulting in crude geometric reproductions [25].

2.4.1 Learned Acoustic Reconstruction

Rather than using the highly sophisticated iterative, geometric, or optimization-

based algorithms described previously, some researchers are turning to neural net-

works and deep learning as a black box alternative for acoustic reconstruction,

which allows for greater computational efficiency and improved specificity for real-

world scenarios.

In BatVision, Christensen et al. use a small robot equipped with a speaker,

binaural microphones, and depth camera to gather a large dataset of indoor scenes

and the echoes they produce in response to an FM chirp [9]. This dataset is then

used to train fully-convolutional neural networks to predict greyscale and depth

images solely from single echoes. In this setting, the use of spectrograms over

waveform audio led to better reconstructions. In further experiments, an additional

neural network was used as a discriminator during training to encourage predicted

images to more closely match the distribution of the training data. Overall, depth

images were found to be a more meaningful representation over greyscale images,

owing to the colouring and lighting information that is not expected to be conveyed

in acoustic echoes.

Hwang et al. similarly use a convolutional neural network modeled after the

neural pathways of a bat’s brain, referred to as Bat-G Net, to predict geometry

from acoustic echoes [16]. To gather their dataset, dubbed ECHO-4CH, a stationary

sensing device consisting of a central ultrasonic electrostatic speaker (UES) and

4 ultrasound condenser microphones (UCMS) that record the echoes produced in
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response to an FM sweep by simple geometric objects. Each example in the dataset

contains one or two obstacles in various orientations at a range of roughly 1.5

meters. Labels for training consist of binary voxel grids that are generated in CAD.

The Bat-G Net model then is trained to predict voxel geometry from an entire

echo, through a combination of fully-connected and convolutional neural network

layers. Occlusions are explicitly disallowed by back-filling any obstructed voxels,

resulting in what is effectively a height-map representation.

Later, Kim et al. further develop the Bat-G Net system by incorporating atten-

tion mechanisms, resulting in Bat-G2 Net [21]. The ECHO-4CH dataset from previ-

ous work is re-used, and rather than predicting back-filled three-dimensional data,

two-dimensional heightmaps are generated instead. Experiments were performed

measuring the performance degradation when competing echo signals appear as

noise in the input audio, and the addition of a non-local attention mechanism was

found to increase reconstruction quality even under the presence of severe noise

relative to the earlier Bat-G Net.

2.5 Acoustic Simulation
To study the interactions between sound and obstacles in a virtual environment, a

simulation is needed that can accurately model the propagation of acoustic waves

through space and their interactions. This can be achieved simply by discretizing

and integrating the wave equation

∇
2 p− 1

c2
0

δ 2 p
δ t2 = 0 (2.1)

which relates the acceleration of the acoustic pressure at any point in space to its

local curvature and the speed of sound. This can be done using the finite-difference

time-domain (FDTD) method, which represents the acoustic pressure as a uniform

grid and computes the local curvature using the differences between neighbouring

grid points. Though conceptually simple, the FDTD requires a very fine discretiza-

tion to achieve a reasonable accuracy for high-bandwidth simulations, which ef-

fectively incurs a very high memory overhead [51]. An alternative method to finite

differences is to use Fourier methods for derivative computation, which is what
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the k-space pseudospectral method does. Treeby et al. provide an efficient imple-

mentation of the k-space pseudospectral method in the K-Wave acoustic simulation

toolkit [51, 52]. K-Wave integrates the acoustic wave equation while allowing users

to specify initial conditions and configurations such as spatially-varying acoustic

properties and sound sources. The K-Wave toolkit has found use and validation in

many publications since its initial development, in studies modeling various phe-

nomena such as receiver directionality [11], non-linear ultrasound propagation in

biological tissue [56], photoacoustic interactions with nanoparticles [36], and elas-

tography [37], waves in inheterogeneous liquids [29, 35].
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Chapter 3

Method

We propose a novel formulation of learned acoustic reconstruction that enables the

use of classical synthetic aperture techniques with recent implicit neural network

architectures. Rather than learning to predict entire scenes at once from whole au-

dio recordings as with existing methods such as BatVision [9] and Bat-G Net [16],

our neural network functions on an individual point in space, receiving cropped

waveform audio signals according to the expected round-trip time of a wave de-

flected at that point. This leaves the network with no spatial awareness other than

what can be inferred from the time-aligned audio signals. Additionally, we use

signed distance fields, as opposed to the depth images or occupancy grids used

in BatVision and Bat-G Net respectively, giving a more continuous representation

which results in a more stable training objective . A high-level illustration of our

system is shown in Figure 3.1.

Unlike BatVision and Bat-G Net, we use an acoustic wave simulation to gather

datasets and perform our experimentation. This enables greater experimental con-

trol and access to accurate geometric information. The details of our simulated

setting are further discussed in the following sections.

In our studies, we compare the effects of the hyperparameters of synthetic fo-

cusing with neural networks, such as the number of receivers used, the length of

time-aligned audio seen by the network, and the network’s internal architecture.

We create special-purpose datasets to measure the ability of our implicit represen-

tation to interpolate and extrapolate to unseen data, and compare the results to those
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Figure 3.1: An overview of our proposed system. An acoustic simulation
computes the echoes produced by various obstacles. These echoes are
focused using synthetic aperture techniques at a single point in space. A
neural network learns to predict the signed distance from these focused
echoes, and is evaluated across many points in space to yield a signed
distance field which can be rendered in 3D. Best viewed in colour.

of competing methods. Finally, we measure the ability of our model and others to

generalize from very small datasets. For the results of our experiments, please refer

to Chapter 4.

3.1 Synthetic Focusing
As the basic input representation to our models, we use temporally-aligned audio

recordings based on the expected straight-line time-of-flight between the emitter, a

given point location in the ROI, and the receivers. This synthetic focusing technique

bears close resemblance to delay-and-sum techniques used in classical wave-based

imaging systems, except that instead of simply summing the resulting waveforms

to estimate their strength, we provide the time-aligned and windowed audio signals

directly to a neural network that learns to relate them to the presence of solid ob-

stacles. Effectively, our proposed method is a data-driven nonlinear delay-and-sum

method for acoustic reconstruction. Like other implicit function neural networks,
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we train on single points in space and produce scalar outputs. Unlike other implicit

function neural networks, our model does not receive the desired spatial coordi-

nates as inputs.

We assume that the emitter and receiver locations relative to one another are

known, and that the speed of sound in air is constant. We perform synthetic fo-

cusing at a given spatial sampling location (x,y,z) as follows. Given the known

emitter location and receiver locations (xe,ye,ze) and (xr
i ,y

r
i ,z

r
i ) respectively, we

first compute the linear distance from the emitter to the sampling location de, and

the distance from the sampling location to the i-th receiver dr
i . The sum of de and dr

i

gives us the round-trip distance that a wave would travel if deflected at that point,

and from this we can compute the total expected time of flight ∆ti for each receiver

as

de =
√
(x− xe)2 +(y− ye)2 +(z− ze)2,

dr
i =

√
(x− xr

i )
2 +(y− yr

i )
2 +(z− zr

i )
2,

∆ti =
de +dr

i

c
,

where c = 343 m/s is the speed of sound in air as used in the simulation. The

per-receiver delay ∆ti is then used to align and window each received signal Si,

resulting in synthetically focused audio signals Ŝi, defined as

Ŝi(t) = k (de)2 (dr
i )

2 Si

(
t + fs∆ti−

W
2

)
, (3.1)

with t ∈ {0, ...,W −1} where k = 30 dB is an experimentally-tuned gain constant,

(de)2 (dr
i )

2 applies an amplitude compensation based on the distance traveled as-

suming spherical wave propagation to and from a small deflector, and W is the

window length, in samples. In our experiments, W ranges from 64 to 256 samples.

It should be noted that the expected moment of arrival occurs in the middle of the

focused audio at t = W
2 , thus providing nearby information from both before and

after this point in time.

By considering only the linear distance between the emitters, receivers, and
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(a) Point at surface (b) Point near surface (c) Distant point

(d) Signals at surface (e) Signals near surface (f) Distant signals

Figure 3.2: Visualization of the synthetically focused signals Ŝi at various
locations relative to the closest surface of rectangular prism. In the top
row, the emitter and receivers are shown in blue and orange respectively,
and the sampling location is depicted with a red ’x’. The waveforms of
the focused signals for each receiver with a window size of W = 64
samples are overlaid in the bottom row for the same sampling locations
illustrated above. Best viewed in colour.

sampling location, we implicitly are neglecting to model the effects of secondary

reflections and occlusions which may be caused by other obstacles in or near the

straight paths. In classical approaches, these sources of interference are overcome

with abundantly many receivers and emitters, causing such interactions to become

insignificant relative to true reflections. However in our learned setting, partic-

ularly when using very few receivers, our models must learn to account for this

interference in order to make robust predictions in the presence of multiple distinct

reflectors. When the sampling location is on the nearest surface of a solid obstacle,

we expect the synthetically focused signals Ŝi to contain a detectable echo centered

at t = W
2 across all receivers. In all other cases, we expect the Ŝi to contain various

amounts of silence and interfering echoes from other obstacles that are unlikely to

be in phase across all receivers. The effect of the proximity of the sampling loca-

tion to an obstacle on the synthetically-focused signals Ŝi is depicted in Figure 3.2.

We illustrate how our synthetic focusing can be used even without machine

learning in simple visualizations closely related to those in SAU and underwater

acoustic imaging in Figure 3.3.
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(a) 64 Receivers
0-20 kHz

(b) 16 Receivers
0-20 kHz

(c) 4 Receivers
0-20 kHz

(d) 64 Receivers
18-22 kHz

(e) 16 Receivers
18-22 kHz

(f) 4 Receivers
18-22 kHz

Figure 3.3: A simple and non-learned imaging method using our synthetic
focusing technique, rendered from the echoes of a single rectangular
prism. Image brightness is the logarithm of the mean signal power di-
vided by the average variance between all channels. For a large band-
width such as the 0-20 kHz FM chirp used in the top row, this clearly
localizes the obstacles. At a narrower bandwidth and with fewer re-
ceivers, the image becomes distorted by wave interference, and this
simple technique breaks down.

3.1.1 Simulation Environment

Each example in our dataset is implemented as a 177×69×69 centimeter volume

at a resolution of 7.5 millimeters per grid cell. This choice of parameters is mo-

tivated in Section 3.1.3. Absorbing boundaries are used to prevent waves that are

leaving the simulation area from returning as unwanted echoes, thus simulating an

effectively infinite empty volume, and are realized using 10 perfectly-matched lay-

ers (PMLS) [2] on all sides of the simulation, resulting in a total computational grid

size of 256×112×112 units. We denote the longest dimension as the x direction,

and the shorter dimensions as y and z. We reserve a cubic region consisting of the

first 69 centimeters of the x-dimension for the emitter and receivers.

The remaining 108× 69× 69 centimeter volume at the other end of the x-

dimension is reserved for placing obstacles and is referred to as the region of inter-

est (ROI). Obstacles are discretized and emplaced into the simulation by assigning

the underlying simulation grid within the obstacle interior the acoustic properties of

typical wood. All other grid locations are modelled as air at standard atmospheric
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(a) Perspective view (b) Front view

(c) Top view (d) Side view

Figure 3.4: Our simulation volume and experimental setup rendered in 3D
from multiple views, showing only the 4 receivers used in a majority of
our experiments. The blue sphere represents the location of the virtual
emitter, and each orange sphere denotes a receiver location. Best viewed
in colour.

conditions.

The simulations used for our experiments were performed using the hardware-

accelerated CUDA K-Wave executable [51] and with hardware resources kindly

provided by the UBC ARC Sockeye high-performance computational cluster [54].

An illustration of our simulation volume including obstacles and hardware lo-

cations can be seen in Figure 3.4.

The initial wave condition is defined by placing a single high-pressure impulse

at the location of our single emitter, in the center of the 69× 69× 69 reserved

region, as is further described in Section 3.2. This initial impulse is then smoothed

by applying a Blackman window function to the spatial pressure distribution in the

frequency domain, which prevents high-frequency ”ringing” artefacts from arising

elsewhere in space due to K-Wave’s use of the spatial frequency domain. The

reasons for placing a single impulse rather than simulating a realistic emitted signal

such as an FM chirp are discussed in Section 3.1.2.
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Once the initial conditions are fully specified, the simulation is stepped at

2× 10−7 seconds per time step, a number that was experimentally found to pre-

vent numerical instability, and for a sufficient number of time steps for a wave

travelling through air to traverse the length of simulation twice. At every time

step, the acoustic pressure is sampled at each receiver location and recorded. After

the simulation is complete, we re-sample the recorded signals from the extremely

high simulation step frequency of 5 MHz to the desired sampling frequency of

fs = 96 kHz, after applying a 10th order Butterworth low-pass filter with a cut-off

frequency of fs
2 = 48 kHz to remove any high-frequency components that would

otherwise introduce aliasing. The resulting acoustic recordings are each 2048 sam-

ples long, spanning a duration of approximately 21 milliseconds. We refer to the

signal recorded by the i-th receiver as Si(t) where t denotes time samples and is

expected to range from 0 to 2047. If t falls outside this range, Si is defined to be 0,

and if t has a fractional value, we implicitly linearly interpolate the sample values

at the nearest integer locations.

3.1.2 Choice of Emitted Signal

Although K-Wave supports time-varying sound sources which can be used to di-

rectly simulate an FM chirp as used in other acoustic reconstruction datasets, we

simulate only a single impulse. Because obstacles are held fixed and are not mov-

ing, the simulation is a linear time-invariant system and therefore we can later use

a convolution to perfectly emulate the echo produced by any desirable emitted sig-

nal. Effectively, our dataset is made generic with respect to the emitted signal at

negligible extra computational cost. Although we do not investigate the effects of

different emitted signals in this work, our dataset allows such experimentation to be

done efficiently in future work without needing to perform additional simulations.

We consider using only a single acoustic emitter in our current experiments

for two reasons. Firstly, while extra receivers may be simulated at negligible extra

cost, recording the signals from multiple emitters in a separable manner requires

re-running each simulation once per additional emitter, which increases the cost

of creating our datasets. Secondly, using multiple acoustic emissions would in-

crease the total capture time of our system in a physical implementation, resulting
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in slower frame rates.

In all our experiments, when training and evaluating both our own methods as

well as competing methods, we use a linear FM chirp consisting of a sine wave

rising in frequency from 18 kHz to 22 kHz and lasting 1 millisecond, for a total of

20 wavelengths.

3.1.3 Spatiotemporal Tradeoffs

The size and spatial resolution of the simulation grid represents an important com-

promise between the spatial extent of the simulation volume, the computational

cost, and the maximum representable frequency. For generating a large dataset as

needed for machine learning, increasing computational costs become prohibitive.

On the other hand, due to the Nyquist theorem, the highest representable frequency

has a wavelength equal in length to two grid cells, and thus we need a fine dis-

cretization in order to represent waves of ultrasound. To make our dataset com-

parable with the real world, we ideally want to simulate the highest possible fre-

quencies used in existing ultrasound methods. For modeling acoustic interactions

in close-range human environments, we would also like to consider a volume of

space several meters in size. However, increasing the resolution causes at least a

cubic increase in the computational workload. Considering that the total simulation

time must be enough to capture echoes from the most distance possible obstacles,

the total number of simulation time steps must also increase linearly with the sim-

ulation scale, leading to a quartic increase in computational cost when increasing

the simulation scale.

The spatial parameters chosen for our simulations are derived from early ex-

plorations into the feasibility of a synthetic dataset, and they enable the represen-

tation of ultrasonic frequencies up to 22.8 kHz with a maximum spatial extent of

just under 2 meters. While the frequency range is less than that of the physically-

acquired ECHO-4CH dataset [16] it still represents a usable ultrasonic bandwidth

of a few kHz and extends beyond the 20 kHz limit of the BatVision [9] dataset.

Additionally, the ROI in our dataset has a physical volume nearly twice as large as

the 64×64×64 cm ROI used in ECHO-4CH while also offering 33% higher reso-

lution along each axis. The maximum range in our dataset remains close to that of
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ECHO-4CH at approximately 2 meters.

3.1.4 Practical Benefits for Dataset Curation

The use of acoustic simulation to generate a synthetic dataset, rather than using

physical hardware to measure the echo responses of real-world obstacles environ-

ments, comes with its own tradeoffs which are outlined here. A real-world dataset

firstly requires hardware, which, for producing and measuring ultrasound in air,

especially with multiple receivers, can be prohibitively expensive. By using an

acoustic simulation, we can simply drive and record the acoustic pressure at any

desirable point in space with perfect fidelity, without having to worry about the

impedance, directionality, and selective frequency response that hardware intro-

duces. Additionally, by using a deterministic and wholly self-contained simulation,

we are able to rule out environmental factors such as inaudible noise sources and

varying speeds of sound due to atmospheric conditions, which future work into a

physical implementation of our technique will need to address.

The final major complication for a real-world dataset is the positioning of ob-

stacles in the environment and capturing those positions accurately for ground truth

labels. In ECHO-4CH, the obstacle positions are limited to a horizontal plane and

rotated at fixed intervals. This simplifies mechanically positioning and automati-

cally generating labels in software for the obstacles, but the statistical distribution

remains limited in this fashion. Conversely, in BatVision, obstacle labels are drawn

from a much more diverse distribution of indoor environments, but at the cost of re-

lying on a depth camera rather than a mathematical description as the single source

of truth for training labels. Notably, the depth camera does not capture occluded

objects and is often unable to estimate depth for portions of an image, resulting in

missing information which a machine learning method will be taxed with model-

ing if no extra precautions are taken. By using a simulation consisting of a dense,

volumetric grid, we are able to use the same mathematical description for both cap-

turing the echo produced by an obstacle and for the ground truth label used during

training. Additionally, we are free to place obstacles anywhere in space, without

mechanical support, and we have direct access to occluded regions.
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Figure 3.5: A perspective view of our simulation volume and experimental
setup with all 64 receiver locations in their 4× 4× 4 grid formation
shown as orange spheres. The blue sphere at the center denotes the
location of the emitter. Best viewed in colour.

3.2 Emitter and Receiver Arrangement
For each individual example in our dataset, we choose an obstacle configuration,

place obstacles into the ROI, and run an acoustic simulation to obtain an impulse

response for each acoustic receiver. The initial impulse is placed at the exact center

of the 69× 69× 69 cm region at the low end of the x-dimension. A total of 64

receivers are placed in a uniform grid surrounding the emitter with 4 receivers

along each grid axis and with 11.5 cm between adjacent receivers, for a total span

of 34.5 cm in each dimension. This locations of all these receivers within the

simulation volume are shown in Figure 3.5. We denote the spatial location of the

emitter as (xe,ye,ze), and the location of the i-th receiver is referred to as (xr
i ,y

r
i ,z

r
i ).

While a total of 64 receivers would be difficult to realize in hardware, addi-

tional receivers in our virtual dataset come at no additional simulation cost, and

any desirable subset of the receivers may be used during training. The receiver

and emitters have an nominal sample rate of 96 kHz as discussed in Section 3.1.2.

However, the effective range of practical frequencies is limited by the simulation’s

spatial resolution to 22.8 kHz, short of the theoretical 48 kHz due to the sampling

rate, as explained in Section 3.1.3.
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3.3 Obstacle Distributions
We use a total of three simulated datasets in our experiments for training and eval-

uating models, all consisting of a variety of random obstacle types, sizes, and ori-

entations. While the scenes in our dataset are fairly simplistic compared to the

real-world indoor environments used by Christensen et al. for the BatVision model

[9], the sizes and positions of are more diverse than those of the ECHO-4CH dataset

used to train Bat-G Net [16] as discussed further in Appending A.2. The three

datasets vary primarily in which regions of space are withheld and kept free of any

obstacles for the purposes of cross-validation.

The obstacles in each dataset consist of spheres and axis-aligned rectangular

prisms whose positions are drawn from a uniform random distribution spanning

the entire ROI or a subset thereof. The sphere diameters as well as the widths,

heights, and lengths of the rectangular prisms are similarly drawn from a uniform

random distribution of between 2 and 20 centimeters. Between 1 and 4 obstacles

in total are placed in each example, and spheres and rectangular prisms are both

chosen with a 50% probability. No precautions are taken to prevent occlusions or

intersections between obstacles.

The first dataset, dubbed RANDOM, consists of obstacles placed at random any-

where in the entire ROI without constraint. The second dataset, which we refer to

as RANDOM-INNER, restricts obstacles to lie only within a centered rectangular

subset of the ROI with half the total volume, spanning the entire extent of the x di-

rection of the ROI, such that an outer margin along the x-direction is kept free. The

third dataset, dubbed RANDOM-OUTER, is the complement of the RANDOM-INNER

dataset, consisting of obstacles located strictly outside of the same inner half, with

the inner half kept empty as seen from the perspective of the emitter and receivers.

Each of the RANDOM, RANDOM-INNER, and RANDOM-OUTER datasets consists

of 5000 examples in total for training, 500 for validation, and 500 for testing. All

three of our datasets are visually summarized in Figure 3.6.

3.4 Geometric Representation
The choice of output representation has a significant effect on neural network per-

formance in practice, where dataset sizes are limited, and domain-specific knowl-
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(a) RANDOM,
front

(b) RANDOM,
side

(c) RANDOM,
top

(d) RANDOM-INNER,
front

(e) RANDOM-INNER,
side

(f) RANDOM-INNER,
top

(g) RANDOM-OUTER,
front

(h) RANDOM-OUTER,
side

(i) RANDOM-OUTER,
top

Figure 3.6: Spatially-varying density of obstacles in our three datasets as
viewed from different directions. These images were creating by sum-
ming the occupancy maps of all examples in each dataset before pro-
jecting along the viewing direction.

edge is often applied to improve learning. We use the signed distance to the near-

est obstacle surface as our choice of geometric representation for training neural

networks on synthetically focused audio. Signed distance fields offer several ad-

vantages for our setting over binary occupancy fields as a dense 3D format. Firstly,

the signal varies more smoothly than occupancy fields, which jump discontinu-

ously at obstacle boundaries and are thus less favourable for approximation by a

implicit neural network. Secondly, the signed distance field is trivially convertible

to an occupancy grid for evaluation purposes by using a threshold—locations with

a signed distance of zero or less are occupied, and other locations are unoccupied.

Thirdly, signed distance fields lend themselves naturally to convenient rendering

techniques, such as sphere tracing [14] for efficient ray-intersection and perspective

rendering, and shading using spatial derivatives to compute surface normal vectors.

A visual comparison of binary occupancy fields and signed distance fields is shown

in Figure 3.7. 3D renderings in this and other figures created using sphere-tracing

to find the nearest obstacle surface along camera rays, and shading was performed
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(a) Occupancy, box (b) Occupancy, spheres

(c) Signed distance, box (d) Signed distance, spheres

(e) Perspective rendering, box (f) Perspective rendering, spheres

Figure 3.7: Colour-coded visualizations of signed distance fields as com-
pared to occupancy maps, in two and three dimensions. Regions with a
negative distance are shown in blue, positive distance is shown in shades
of orange, and white represents a value close to zero. Notably, the
signed distance field can be seen to yield to more information about the
proximity of obstacles, such as the smaller sphere located away from
the middle plane, as well as the depth inside of obstacles. In the 3D
perspective renderings in the bottom row, the signed distance fields are
shown filling one half of the ROI. Best viewed in colour.

using basic Lambertian reflection, where the brightness of a surface varies with dot

product of the SDF surface normal and a light direction vector.
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Figure 3.8: A depiction of our convolutional neural network architecture.
The white rectangles denote the sizes of hidden activations, and the blue
rectangles represent convolutional kernels. The final arrow represents a
fully-connected layer. Best viewed in colour.

3.5 Network Model
In order to make a physical realization of our method most feasible, we consider

the minimum number of receivers needed for acoustic reconstruction to be 4, which

matches the hardware setup used in Bat-G Net. This is the number we use when

evaluating our model against other techniques and for many of our experiments.

The network architecture stated below is the result of a parameter search, which is

described along with the effects of the number of receivers on network performance

in Chapter 4.

We use a convolutional neural network to map from synthetically-focused tem-

poral domain audio signals to the signed distance at a given point in space. We

represent the input as a 1-dimensional tensor with 4 feature channels correspond-

ing to each reciever and with a temporal length defined by our synthetic focusing

as W = 256. Three sequential convolutional layers are applied, each of which has

a stride of 2 and halves the input length, producing a feature vector with a tempo-

ral length of 32 and with 32 feature channels. This is then flattened, producing a
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Convolutional Layers
Layer Input Length Kernel Size Padding Output Channels Stride

0 256 31 15 128 2
1 128 31 15 128 2
2 64 31 15 32 2

Fully-Connected Layers
Layer Input Features Output Features

3 1024 1

Table 3.1: Parameters of all convolutional and fully-connected layers of our
neural network model. Batch normalization layers and activation func-
tions are not depicted.

1024-dimensional feature vector, and given to a fully-connected layer which con-

tains a single output neuron that we interpret as the estimated signed distance at

the sampling location. The parameters of all network layers are given in Table 3.1.

We apply Batch Normalization [18] to the inputs of all layers and the Leaky ReLU

activation function with a negative slope of 0.1 between all hidden layers.

3.5.1 Network Training

When training our network, we clamp the signed distance to a maximum of 10

centimeters away from the nearest obstacle, on the premise that the synthetically

focused audio signals limit the network’s global awareness, and that forcing it to

learn the distance to far-away obstacles would degrade its performance near the

surface of obstacles.

Like other neural networks, our model is trained on random mini-batches of

geometric examples to improve stochastic gradient estimates. Additionally, within

each example, we randomly select a large number of sampling locations according

to a custom probability distribution which preferentially places training samples

near or within the surface of obstacles. This is necessary because the simula-

tion volume consists predominantly of empty space, and uniform random sam-

pling would bring the network’s attention mostly away from the obstacles we

are interested in. We perform weighted random sampling as follows. Given the

signed distance field discretized at all simulation grid locations sdf(i, j,k) where
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i ∈ {0, ...,107} and j,k ∈ {0, ...,68}, we assign the relative weight w to each grid

location as

w(i, j,k) = e(−r×max(sdf(i, j,k)−dmin,0)), (3.2)

where r ≈ 69.318 m−1 is a spatial decay rate causing a decrease of 50% every

centimeter, and dmin = 2 cm is the distance below which the weight is limited and

remains constant. Effectively, all points inside or very close to obstacles are given

a high weight, and other locations have a weight that decays exponentially with

distance. We normalize all weights to sum to 1 and draw samples according to the

discrete distribution

P(x = i,y = j,z = k) =
w(i, j,k)

∑i, j,k w(i, j,k)
, (3.3)

where x,y,z are the grid indices being sampled. These indices are then mapped to

spatial coordinates, at which point they are used to perform synthetic focusing and

create network training inputs.

At each training step, our model computes the estimated signed distance d̂ at

each sampling point from the synthetically-focused signals Ŝ. The loss function

L we compute is the mean absolute error (MAE) between the estimated signed

distance d̂ and the ground truth signed distance d

L = E
P

[∣∣d− d̂
∣∣] (3.4)

where EP is the expectation over all grid locations as drawn from the distribution

P.

From this loss, our network is optimized using the Adam algorithm [22]. We

use the PyTorch framework for hardware-accelerated numeric computing and au-

tomatic differentiation to implement and train our models [34].
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Chapter 4

Results

To understand how our synthetic focusing procedure behaves as an input acoustic

representation, we first train a set of neural networks using different numbers of

acoustic receivers and different sizes of audio windows W , and report the effects

on geometric accuracy in Section 4.1.

Then, to optimize our network model for the special case of 4 receivers and a

window size of W = 256 samples, we perform a hyper-parameter search in Sec-

tion 4.2 in which we test the effects of the convolutional kernel size and hidden

feature dimensions on network behaviour. We additionally measure the effects of

using the frequency domain by applying a Fourier transform to the synthetically-

focused audio, as well the performance of a simple fully-connected network given

the same inputs.

In our main experiment, we train our model, a re-implementation of Bat-G

Net [16], and the reportedly best-performing variants of BatVision [9] using the

original source code, on each of our three simulated datasets, all with the same 4

receivers. In these experiments, we seek to understand how each model is able to

generalize to new scenarios from limited training data, in terms of both the number

of available training examples and their spatial diversity. Additionally, we hope

to explore how our domain-specific audio representation using synthetic aperture

focusing affects model performance given the practical limitations of datasets.

As a simple comparison and initial baseline, we first train all models on the

RANDOM training dataset and evaluate their performance on the RANDOM test set
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which is drawn from the same distribution. Then, to measure the extrapolation

behaviour of all models, we train each network on the RANDOM-INNER dataset

and evaluate on the RANDOM-OUTER dataset, forcing models to predict geometry

located outside the distribution they have previously seen. Finally, in a comple-

mentary trial, we train all models on the RANDOM-OUTER dataset and before eval-

uating on the RANDOM-INNER dataset, to measure how each model performs when

predicting obstacles located within the same spatial extent as their training data but

whose exact positions have never been observed while learning. These experiments

help us to draw simple conclusions about how these models may perform on phys-

ical datasets with inherently-limited diversity and with training distributions that in

general may differ from the data seen at test time. We provide further details and

results in Section 4.3.

To demonstrate how our model compares to others when training datasets are

small, we perform three additional comparisons between our model, Bat-G Net

[16], and BatVision [9] using subsets of the RANDOM dataset for training and

evaluation. This serves both to measure the relative sample efficiency of each

method as well to better understand their applicability in real-world conditions

where dataset curation is expensive. The RANDOM dataset contains 5000 training

examples, but in these experiments, we use only the first 500, 50, and 5 examples,

respectively, to train each model, in order to measure how each model’s perfor-

mance degrades with limiting dataset sizes. Please refer to Section 4.4 for a full

description and the results of this experiment.

Finally, as justification for the many additional design choices made in our pro-

posed input representation and network training procedure, we conduct an ablation

study in Section 4.5 in which we selectively bypass or replace components of our

system and quantify the effect on test performance.

4.1 Receiver Count and Window Size
To measure how our synthetically-focused audio representation behaves as an input

for learned acoustic reconstruction, we first hold fixed the architecture of a simple

neural network while varying the number of acoustic receivers as well as the win-

dow size W of the focused audio that the network is given as an input. We train
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each network for 24 hours on the RANDOM training dataset. During training, we

periodically evaluate each model’s performance on the RANDOM validation, and

we report its best results on this unseen data. Then at test time, we quantify model

performance by densely evaluating the network at each point in the ROI volume,

yielding a signed distance field at our simulation’s grid resolution, which we then

threshold to yield a binary occupancy map. This map is compared to the ground

truth by computing the F1 score and the intersection over union (IOU), both of

which range from a minimum score of 0 to a perfect score of 1. The results of this

study are shown in Table 4.1.

The network model used in this study follows the same general architecture

as our final model that was found after performing our hyper-parameter search,

but differs in that it uses a relatively small convolutional kernel size of 5 and only

32 hidden feature channels, compared to the kernel size of 31 and the 128 hidden

feature channels of our primary neural network.

In each trial, as we vary the number of receivers in use, we maintain a total

spatial extend for the receiving array of 34.5 cm in the y and z directions. Similarly,

the receiving array covers a span of 34.5 cm in the x direction unless Nx = 1 in

which case the receivers all lie on a plane facing the ROI.

We observe that the model’s test performance improves monotonically with the

number of receivers being used. Performance also improves consistently when us-

ing a window size of W = 128 rather than 64. The improvements when increasing

the window size to 256 relative to 128 are somewhat insignificant for this choice

of network. We note that for the two choices of 16 total receivers we investigated,

the planar receiver arrangement (Nx = 1,Ny = 4,Nz = 4) performed better than the

volumetric arrangement (Nx = 4,Ny = 2,Nz = 2). This may in part be due to the

finer cross-range resolution of the planar arrangement, which has 4×4 spacing in

the y and z axes compared to the 2×2 spacing of the volumetric arrangement.

4.2 Network Hyperparameter Search
To make our proposed model more physically realizable and to allow a more fair

comparison between our technique and competing models in terms of the amount

of hardware being used, we use a total of 4 receivers in all our remaining studies
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W Total Receivers Nx Ny Nz F1 Score ↑ IoU ↑

64

4 1 2 2 0.2018 0.1284
8 2 2 2 0.3459 0.2337
16 4 2 2 0.4566 0.3214
16 1 4 4 0.4945 0.3534
32 2 4 4 0.5501 0.4051
64 4 4 4 0.5839 0.4409

128

4 1 2 2 0.3247 0.2232
8 2 2 2 0.4238 0.3028
16 4 2 2 0.5025 0.3694
16 1 4 4 0.5350 0.4018
32 2 4 4 0.5959 0.4553
64 4 4 4 0.6122 0.4731

256

4 1 2 2 0.3418 0.2439
8 2 2 2 0.4520 0.3286
16 4 2 2 0.5023 0.3704
16 1 4 4 0.5532 0.4166
32 2 4 4 0.5826 0.4434
64 4 4 4 0.6048 0.4664

Table 4.1: Neural network performance versus receiver count and arrange-
ment. The reported F1 scores and IOU are computed on the RANDOM

validation set. Nx, Ny, and Nz denote the size of the receiver array along
each axis.

for both our own models and those we compare against. These four receivers are

placed at the corners of a 34.5× 34.5 cm plane facing the ROI and correspond to

Nx = 1,Ny = 2,Nz = 2 in Table 4.1. In our synthetic focusing procedure, we hold

the window size fixed at W = 256.

Although fully-connected neural networks are known to be universal function

approximators as the size or number of hidden layers is increased arbitrarily [15],

we are interested in pursuing small and efficient networks which are optimized for

our acoustic setting and which can generalize to unseen data, and so we compare

the performance of basic network architectures and audio representations.

Firstly, we measure how a 3-layer fully-connected network compares to a 3-

layer convolutional neural network, while varying the number of hidden features

and kernel sizes. When passing synthetically-focused audio to each network, we
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additionally compare the effect of the direct time-series representation against a

frequency domain representation, in which we first apply a Fourier transform to

the input audio. Our evaluation using the F1 score and IOU using the RANDOM

validation set is identical to that of Section 4.1. Importantly, we do not use the

RANDOM test set in this hyper-parameter search because doing so would bias our

results on the test set in later experiments.

The results for all convolutional neural network variants are given in Table 4.2,

and those for fully-connected neural networks are shown in Table 4.3.

For all convolutional networks, we use a stride of 2 and pad each convolution

with k−1
2 units on both sides where k is the kernel size, which serves to make the

output length precisely half the input length. We additionally limit the feature

channels of the final convolutional layer such that the final fully-connected layer

receives exactly 1024 inputs after flattening.

The single best-performing model was found to be the convolutional neural

network with a kernel size of 31, 128 hidden channels, and temporal domain in-

puts, and this is the model we use for the remainder of our experiments. We note

that other convolutional networks with larger kernel sizes perform similarly well.

Temporal domain inputs improved convolutional network performance in all cases

except for the smallest kernel size of 5, and the best-performing frequency do-

main convolutional network did significantly worse than the best temporal domain

model. For convolutional models working in both the temporal and frequency

domain, we observe that increasing the model size did not consistently improve

performance. This may be due in part to the number of training iterations each

model was subjected to, as these were trained for 24 hours in total and the larger

models were slower to train and evaluate. Because we are interested in models that

learn and yield predictions quickly, we consider this to be a meaningful limitation

to impose. In our main experiments, we train all models for a total of 72 hours.

Among our fully-connected networks, we find that performance improved mono-

tonically with the number of hidden features, and that frequency domain inputs

out-performed time domain inputs in all cases. However, the best performance was

worse than that of the convolution networks. The best-performing fully-connected

models had a larger number of parameters than the best performing convolutional

models in either input domain. Conceivably, we could have investigated using
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Convolutional Neural Networks
Input Domain Kernel Size Channels Parameters F1 Score ↑ IoU ↑

Temporal

5
64 33.4k 0.4853 0.3509
128 107k 0.5359 0.4022
256 376k 0.5367 0.4032

15
64 97.4k 0.6357 0.5034
128 317k 0.6736 0.5444
256 1.12M 0.6586 0.5309

31
64 200k 0.6744 0.5452
128 653k 0.7073 0.5816
256 2.32M 0.6614 0.5366

63

32 138k 0.6613 0.5339
64 405k 0.6770 0.5499
128 1.32M 0.6972 0.5720
256 4.71M 0.6213 0.4945

127

32 278k 0.6704 0.5449
64 814k 0.6910 0.5669
128 2.67M 0.6740 0.5501
256 9.50M 0.5376 0.4128

Frequency

5
64 43.7k 0.5761 0.4453
128 127k 0.5922 0.4645
256 417k 0.6296 0.5015

15
64 128k 0.5582 0.4268
128 378k 0.5941 0.4640
256 1.25M 0.6003 0.4705

31
64 263k 0.5629 0.4323
128 780k 0.5876 0.4551
256 2.57M 0.5658 0.4377

63
64 534k 0.5552 0.4259
128 1.58M 0.5625 0.4306
256 5.23M 0.4999 0.3698

127
64 1.07M 0.5687 0.4349
128 3.19M 0.5362 0.4053
256 10.5M 0.4505 0.3240

Table 4.2: Results of our hyper-parameter search on convolutional neural net-
works. Networks with a temporal domain input receive the synthetically
focused signals directly, and networks with a frequency domain input re-
ceive Fourier-transformed inputs. F1 scores and IOU are computed on
the RANDOM validation set.
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Fully-Connected Neural Networks
Input Domain Hidden Features Parameters F1 Score ↑ IoU ↑

Temporal

64 69.8k 0.3685 0.2502
128 128k 0.4339 0.3067
256 328k 0.4948 0.3653
512 788k 0.5197 0.3893

Frequency

64 70.4k 0.4462 0.3173
128 149k 0.5064 0.3748
256 331k 0.5528 0.4201
512 792k 0.5803 0.4457

Table 4.3: Results of our hyper-parameter search on fully-connected neural
networks. Networks with a temporal domain input receive the syntheti-
cally focused signals directly, and networks with a frequency domain in-
put receive Fourier-transformed inputs. F1 scores and IOU are computed
on the RANDOM validation set.

more hidden features in the fully-connected networks, but we chose not to in this

work and were satisfied with the performance of our convolutional networks.

4.3 Model Comparison and Cross Validation
The three neural network models for learned acoustic reconstruction that we eval-

uate our model against in this work are Bat-G Net [16] which we re-implement as

described in Appendix A.1, and the two BatVision models for waveform audio and

spectrogram audio [9] using source code from Christensen et al.

The Bat-G Net model by design receives 4 channels of audio input in the form

of pairs of spectrograms, one favouring frequency resolution and one with better

temporal resolution, for a total of eight spectrograms. From our simulated 2048-

sample audio signals, we likewise compute pairs of spectrograms, with a long win-

dow of 256 samples and a short window of 64 samples. These spectrograms are

then resampled slightly to 256× 256 to exactly match the expected input size of

Bat-G Net. As an output representation, Bat-G Net produces a 64×64×64 voxel

occupancy grid, and we resample our dataset’s occupancy grid labels between this

size and our 108× 69× 69 voxel ROI for training and evaluation. In their origi-

nal experiments, Hwang et al. modify all labels in their dataset to fill in occluded
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regions along the x-axis as being occupied, resulting in a representation with the

same expressive capacity as a depth map, and we use this representation in our ex-

periments here. Because we are additionally interested in detecting occluded ob-

stacles, and because Bat-G Net is capable of representing occluded obstacles, we

additionally train Bat-G Net on unmodified obstacle labels. We indicate whether or

not obstacle labels were modified in this way with the term ”back-fill” when pre-

senting our results. Further details of our Bat-G Net reimplementation and training

are given in Appendix A.1.

Both BatVision models as proposed receive only binaural audio input, and so

we trivially modify the first layer of each network to accept four input channels

instead of two. In the case of the waveform audio encoder, we resample our 2048-

sample audio inputs to the network’s expected 3200 samples. For the spectrogram

encoder, as with Christensen et al., we compute spectrograms from our input audio

using a window size of 64, and we slightly resample this to match the network’s

expected 2D input size. Instead of a fully-3D output, both BatVision models pro-

duce a 2D depthmap, and so for training we project our dataset occupancy maps

along the x-dimension, producing a normalized depthmap that varies from 0 at the

near surface of the ROI to 1 at the far end. Additional details about our use of the

BatVision models may be found in Appendix A.3.

4.3.1 Quantitative Comparison

Fundamentally, each of Bat-G Net, BatVision, and our implicit model produce a

different output representation, and so we must carefully translate between these in

our evaluations to draw fair conclusions. When comparing our model performance

to that of Bat-G Net without back-filling, we again evaluate our network at every

grid location to produce a dense signed distance field, which we then threshold to

yield a binary occupancy map. This yields a geometric representation equivalent

to that of the Bat-G Net model, and so for both we compute and report the F1 score

and IOU against the ground truth occupancy map.

For a fair comparison between our model, Bat-G Net with back-filling, and

both BatVision variants, we use 3D occupancy maps in which all occluded re-

gions have been back-filled along the x-direction. We generate these back-filled
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occupancy maps from the 2D depthmaps predicted by BatVision using an inverse

projection. To create the same representation from our implicit model, we follow

the same dense evaluation and thresholding procedure used elsewhere, and addi-

tionally fill in all occluded regions along the x-dimension as being occupied. The

Bat-G Net model trained with back-filled obstacle labels produces this representa-

tion directly. We then compute the F1 score and IOU with respect to the similarly

back-filled ground truth occupancy. It should be carefully noted that although we

use the same quantitative metrics when reporting results for models with and with-

out back-filled obstacle labels, because these scores have different physical inter-

pretations, they should not be used to draw conclusions between models that differ

in whether their predicted obstacles are back-filled.

4.3.2 Results on the RANDOM dataset

We train our model, Bat-G Net, BatVision with the waveform encoder, and BatVi-

sion with the spectrogram encoder on the RANDOM training set for a total of 72

hours. We use a batch size of 128 examples and 256 sampling locations per exam-

ple for our model. For Bat-G Net, we use a batch size of 8, and for both BatVision

models, we use a batch size of 16. All models are trained using the Adam opti-

mizer with a learning rate of 2× 10−4 and parameters β1 = 0.5 and β2 = 0.999.

Throughout training for each model, we persist the network state achieving the

highest performance on the RANDOM validation set and use this to compute the F1

scores and IOU as described above on the RANDOM test set. Our results are given

in Table 4.4.

We find that our method performs significantly better than both Bat-G Net and

BatVision with either the waveform or spectrogram encoder. Like Christensen et

al., we observe that the BatVision model performs better with the spectrogram

encoder than with the waveform encoder. Sample outputs from the RANDOM test

set are shown in 3D in figures 4.1 and 4.2.
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Train on RANDOM, Test on RANDOM

Model Back-fill? F1 Score ↑ IoU ↑
Bat-G Net No 0.4094 0.2913
Ours No 0.6817 0.5506
BatVision, waveform Yes 0.1115 0.0723
BatVision, spectrogram Yes 0.2770 0.1883
Bat-G Net Yes 0.5601 0.4256
Ours Yes 0.7520 0.6289

Table 4.4: Network test performance on the RANDOM test set after training
for 72 hours on the RANDOM training set.

4.3.3 Results on the RANDOM-INNER dataset and cross-validation
with RANDOM-OUTER

Next, we re-train all models exactly as in Section 4.3.2, but instead of the RANDOM

dataset, we use the RANDOM-INNER dataset with its excluded outer region for both

training and validation. All other training procedures remain identical. We then

evaluate each model both on the RANDOM-INNER test set as well as the out-of-

distribution RANDOM-OUTER test set, to measure to what extent each network is

able to extrapolate and predict obstacles located outside the spatial extent of the

training data. Our results are given in Table 4.5.

We observe that all networks perform better on the RANDOM-INNER dataset

after being trained on the same distribution than when training and testing on the

RANDOM dataset. However, when being tested on RANDOM-OUTER, which con-

tains obstacles in regions of space that were held empty during training, we observe

that while both Bat-G Net and both BatVision variants perform abysmally, our net-

work still achieves a significant result. In particular, both Bat-G Net and BatVision

simply fail to predict obstacles at all in the outer areas withheld during training,

and instead predict obstacles only in the known inner region or nothing at all. We

show visual results for each network on the RANDOM-INNER dataset in figures 4.3

and 4.4.
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Figure 4.1: Sample outputs from Bat-G Net without back-filled obstacles and
our model on the RANDOM test set after being trained on the RANDOM

training set.

4.3.4 Results on the RANDOM-OUTER dataset and cross-validation
with RANDOM-INNER

In a complementary experiment, we re-train all networks as before, this time using

the RANDOM-OUTER train and validation sets to optimize each model. We then

quantify the in-distribution performance on the RANDOM-OUTER test set as well as

the out-of-distribution performance on the RANDOM-INNER test set, to determine

how well each model is able to predict obstacles located in a withheld region that
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Figure 4.2: Sample outputs from all models with back-filled obstacles on the
RANDOM test set after being trained on the RANDOM training set.

lies within the overall extent of the training distribution. We report the quantitative

results of this experiment in Table 4.6 and provide illustrations of the predictions

of each model in figures 4.5 and 4.6.

Unlike in the previous experiments, all networks performed worse when both

trained and evaluated on the RANDOM-OUTER dataset than when trained and eval-

uated on the RANDOM dataset in Section 4.3.2. We find that BatVision with ei-

ther the waveform encoder or the spectrogram encoder consistently fails to ef-

fectively learn the RANDOM-OUTER distribution. When cross-evaluating on the

RANDOM-INNER dataset, we again find that while Bat-G Net and both BatVision

variants perform extremely poorly, our model suffers only a fractional loss in per-

formance. Curiously, BatVision with the waveform encoder performs better on the
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Train on RANDOM-INNER

Test Set Model Back-fill? F1 Score ↑ IoU ↑

RANDOM-INNER
Bat-G Net No 0.6129 0.4968
Ours No 0.7958 0.6880

RANDOM-OUTER
Bat-G Net No 0.0000 0.0000
Ours No 0.3134 0.2363

RANDOM-INNER

BatVision, WF. Yes 0.2895 0.2104
BatVision, SG. Yes 0.6248 0.5071
Bat-G Net Yes 0.7665 0.6605
Ours Yes 0.8421 0.7490

RANDOM-OUTER

BatVision, WF. Yes 0.0000 0.0000
BatVision, SG. Yes 0.0000 0.0000
Bat-G Net Yes 0.0003 0.0002
Ours Yes 0.3644 0.2902

Table 4.5: Network test performance on the RANDOM-INNER test set and
the RANDOM-OUTER test set after being trained for 72 hours on the
RANDOM-INNER training dataset.

Train on RANDOM-OUTER

Test Set Model Back-fill? F1 Score ↑ IoU ↑

RANDOM-OUTER
Bat-G Net No 0.2620 0.1810
Ours No 0.5863 0.4561

RANDOM-INNER
Bat-G Net No 0.0000 0.0000
Ours No 0.4635 0.3245

RANDOM-OUTER

BatVision, WF. Yes 0.0001 0.0000
BatVision, SG. Yes 0.0000 0.0000
Bat-G Net Yes 0.4820 0.3723
Ours Yes 0.6594 0.5288

RANDOM-INNER

BatVision, WF. Yes 0.0130 0.0067
BatVision, SG. Yes 0.0000 0.0000
Bat-G Net Yes 0.0002 0.0001
Ours Yes 0.6312 0.4841

Table 4.6: Network test performance on the RANDOM-OUTER test set and
the RANDOM-INNER test set after being trained for 72 hours on the
RANDOM-OUTER training dataset.
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Figure 4.3: Sample outputs from Bat-G Net without back-filling and our
model on the RANDOM-OUTER test set after being trained on the
RANDOM-INNER training set. Empty images denote cases where a
model failed to predict any obstacles.
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Figure 4.4: Sample outputs from all models with back-filled obstacles on the
RANDOM-OUTER test set after using the RANDOM-INNER training set
for learning. Empty images represent cases where a model failed to
predict any obstacles.

out-of-distrubution test set than on the in-distribution RANDOM-OUTER. We at-

tribute this to the presence of peculiar artefacts that this model produces when eval-

uated on the RANDOM-INNER dataset, which can be seen in the last two columns

of Figure 4.6.

4.4 Model Comparison on Small Datasets
In our final experiment, we quantify how the performance of each model decreases

when the training dataset becomes progressively smaller. The training and evalua-

tion is identical to that of Section 4.3.2, except that we provide only the first 10%,
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Figure 4.5: Sample outputs from Bat-G Net without back-filling and our
model on the RANDOM-INNER test set after being trained on the
RANDOM-OUTER training set. Empty images represent cases where a
model failed to predict any obstacles.

47



Figure 4.6: Sample outputs from all models on the RANDOM-INNER test set
with back-filling after being trained on the RANDOM-OUTER training
set. Empty images represent cases where a model failed to predict any
obstacles.

1%, and 0.1% of examples in the RANDOM train dataset to each network during

training. We however evaluate each model after training on the entire RANDOM

test set. Results are given in Table 4.7 and illustrated in figures 4.7 and 4.8.

Unsurprisingly, the relative test performance of each model decreases as the

training dataset is reduced in size. Most notably, we observe that the perfor-

mance of Bat-G Net and both BatVision models decreases drastically as the train-

ing dataset becomes progressively smaller, but that our model suffers only mod-

erate losses. We note that in all cases, our model outperforms Bat-G Net and

BatVision when trained on exactly 10× less data, and BatVision is consistently
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Train on Subset of RANDOM, Test on RANDOM

Dataset Size Model Back-fill? F1 Score ↑ IoU ↑

5000
Bat-G Net No 0.4094 0.2913
Ours No 0.6817 0.5506

500
Bat-G Net No 0.0317 0.0185
Ours No 0.5603 0.4190

50
Bat-G Net No 0.0116 0.0063
Ours No 0.3566 0.2405

5
Bat-G Net No 0.0067 0.0038
Ours No 0.1109 0.0666

5000

BatVision, WF. Yes 0.1115 0.0723
BatVision, SG. Yes 0.2770 0.1883
Bat-G Net Yes 0.5608 0.4256
Ours Yes 0.7520 0.6289

500

BatVision, WF. Yes 0.0268 0.0162
BatVision, SG. Yes 0.0873 0.0512
Bat-G Net Yes 0.3133 0.2090
Ours Yes 0.6657 0.5253

50

BatVision, WF. Yes 0.0000 0.0000
BatVision, SG. Yes 0.0441 0.0245
Bat-G Net Yes 0.0734 0.0434
Ours Yes 0.4669 0.3353

5

BatVision, WF. Yes 0.0079 0.0043
BatVision, SG. Yes 0.0334 0.0179
Bat-G Net Yes 0.0122 0.0068
Ours Yes 0.1628 0.1018

Table 4.7: Results across the entire RANDOM test set after training each
model on limited subsets of the RANDOM training set.

outperformed by our model with 100× fewer training examples.

4.5 Ablation Study
In our final series of experiments, we test the effect of design decisions made in

our synthetic focusing procedure, our output representation, and our network train-

ing procedure, by disabling or replacing these aspects and measuring the result of

training.
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Figure 4.7: Sample outputs from Bat-G Net without back-filling and our
model on the RANDOM test set after being trained on subsets of the
RANDOM training set of decreasing size. Empty images represent cases
where a model failed to predict any obstacles.

In the given formulation of our synthetically-focused audio inputs, we apply a

distance-dependent amplification factor (de)2 (dr
i )

2 which serves to counteract the

loss of signal strength due to spherical wave propagation. In the first trial of our

ablation study, we remove this term completely. In the second trial, we similarly

remove this term, but apply a sign-preserving clipped logarithm to each point in

the input audio, as an alternative method for dynamic range compression, defined

as

Ŝ∗i (t) = sign
(
Ŝi(t)

) log
(
min

(
max

(∣∣Ŝi(t)
∣∣ ,vmin

)
,vmax

))
− log(vmin)

log(vmax)− log(vmin)
(4.1)

where vmin = 10−5 and vmax = 1 are experimentally-tuned constants denoting the

minimum and maximum expected amplitudes of the recorded audio. Effectively,
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Figure 4.8: Sample outputs from all models with back-filled obstacles on the
RANDOM test set after training on subsets of the RANDOM training set
of decreasing size. Empty images represent cases where a model failed
to predict any obstacles.

Ŝ∗i (t) relates linearly to the logarithm of the magnitude Ŝi(t) within the range of

vmin and vmax, has a magnitude normalized to [0,1], and has the same sign as the

input.

To measure the impact of our importance sampling procedure in which training

locations are chosen preferentially near or inside obstacle surfaces, in our next trial,

we re-train a network using grid locations that are sampled from a uniform random

distribution U throughout the ROI

U(x = i,y = j,z = k) =
1

LWH
, (4.2)

where L = 144, W = 112, and H = 112 are the sizes of our simulation grid. We

then train our model with an otherwise unmodified loss function

L = E
U

[∣∣d− d̂
∣∣] (4.3)
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Experiment F1 Score ↑ IoU ↑
Uniform sampling without importance-weighted loss 0.0000 0.0000
Logarithmic amplitude compensation 0.3322 0.2150
No amplitude compensation 0.4007 0.2842
Uniform sampling with importance-weighted loss 0.4449 0.3124
Binary occupancy instead of SDF 0.5052 0.3740
Control 0.5316 0.3981

Table 4.8: Results on the RANDOM test set after training on the RANDOM

training set with select features disabled or replaced with alternatives.

where EU is the expectation over all grid locations according to the distribution U .

In a closely-related experiment, we draw samples uniformly, but weight the con-

tribution of each sampling location to the loss according to the custom probability

distribution P in which the proximity and interior of obstacles is given preference.

For this trial, the loss function we use is

L = E
(x,y,z)∼U

[
P(x,y,z)

∣∣d− d̂
∣∣] . (4.4)

This achieves importance sampling similarly to drawing sampling locations di-

rectly from our custom distribution P, except that a majority of sampling locations

now lie in empty space where they receive a low weight.

Finally, we replace the signed distance field representation with a binary oc-

cupancy field, whose possible values are 1 denoting occupied and -1 denoting un-

occupied. We report all test results and those of an unmodified neural network in

Table 4.8.

From these results, we conclude that each of our distance-dependent ampli-

tude compensation, importance sampling, and signed distance field representation

improves network performance. Most notably, training on grid locations drawn

uniformly with an unweighted loss function resulted in the network failing to pre-

dict any obstacles, likely due to the fact that the vast majority of spatial locations

in our dataset are empty space. Using an importance-weighted loss with uniformly

sampling yielded performance that was similar to but not as good as that of directly

sampling locations from the custom distribution P. The quantitative benefits of us-
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ing the signed distance field over a binary occupancy grid in this setting appear to

be relatively minor, but significant nonetheless.

53



Chapter 5

Discussion

In our first experiment testing the behaviour of our synthetically-focused audio rep-

resentation in Section 4.1, we varied the number of receivers that a simple convolu-

tional network receives, and we found that performance improved readily with the

number of receivers that are used. We find this to be in agreement with the trend

in acoustic imaging literature towards increasing numbers of receivers for better

visualizations, and thus validating for our input representation in this context. In

practice, when creating a physical implementation of our system, this also means

that the quality of predicted visualizations may be improved simply by using more

acoustic receivers.

Across all our experiments comparing our methods to those of Bat-G Net and

BatVision, we find our method performs significantly better in every setting that we

tested. In our simplest comparison experiment in Section 4.3.2 where we trained

and tested models on the entire RANDOM dataset, we conclude that our models

perform significantly better than other models. But importantly, in our remaining

experiments on cross-validation in Section 4.3.3 and Section 4.3.4, as well on the

effect of limiting dataset sizes in Section 4.4, we find that the Bat-G Net and BatVi-

sion fail to generalize to obstacles in previously-unseen regions of space and re-

quire very large numbers of training examples to achieve noteworthy performance.

We believe this to be due to the use of dense representations, in which a single

output neuron is devoted to each spatial location, and each such neuron receives
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Model Learnable Parameters
Bat-G Net 25585129
BatVision, waveform input 47563201
BatVision, spectrogram input 71533697
Ours 652585

Table 5.1: Total number of learnable scalar parameters for each model used
in our experiments.

separate treatment by design. In stark contrast, our proposed model, which has no

direct spatial awareness, is able to meaningfully interpolate, extrapolate, and learn

from relatively few examples. We believe this marks an important step towards

practical adoption of in-air learned acoustic reconstruction, due to the technical

challenges of dataset curation.

We also hold these results to be especially significant given that our proposed

model has only a small fraction of the number of learnable parameters of Bat-G Net

or BatVision as shown in Table 5.1. We attribute the ability of our proposed model

to generalize well despite its size and lack of spatial awareness to the amount of

usable information already present in our synthetically-focused audio inputs.

In our simulated datasets, we consider only small reflectors. This results in

relatively quiet echoes, due to the compounding signal loss of spherical wave

propagation both to and from the obstacles. In our synthetic focusing process, we

compensate for this explicitly in our input representation by applying a distance-

dependent amplification. In Bat-G Net, the ECHO-4CH dataset used by Hwang et

al. is similar with respect to its small reflectors, and the use of a spectrogram,

which computes the logarithm of the input signal strength across time and fre-

quency, helps to account for such tiny echoes. The BatVision model with the spec-

trogram encoder shares this benefit, but the BatVision model for waveforms is in-

stead forced to account for an enormous dynamic range. In the BatVision dataset of

indoor office environments, where typical reflectors are large rooms, hallways, and

furniture, we expect the returning echoes to be stronger than in the case of small

reflectors, and we attribute the poor performance of BatVision with the waveform

encoder in our experiments to this effect.
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Model Dense Evaluation Time (s)
Bat-G Net 0.018
BatVision, waveform input 0.0038
BatVision, spectrogram input 0.0064
Ours 9.1

Table 5.2: Total time taken by each model to produce an estimate for every
point in the experimental volume at our simulation grid resolution. Bat-G
Net and BatVision produce a dense representation directly, but our model
must be re-evaluated separately at every point. Run times were computed
on an Nvidia GeForce RTX 2080 Ti GPU.

5.1 Limitations
One major drawback of our implicit neural network formulation is that as pro-

posed, it must be separately re-evaluated at every location in space, without any

clear opportunity for reducing redundant work when predicting each point in a

large volumetric grid. Although our model is much smaller in terms of the num-

ber of trainable parameters, in our evaluations, we find our model to be orders of

magnitude slower to evaluate on the entire simulation grid relative to Bat-G Net

and BatVision, which give predictions for the entire scene in a single invocation.

We report the time taken by each model to predict an entire volume in Table 5.2.

For practical adoption, one major avenue for future work will be finding more ef-

ficient formulations for our method, such as using the estimated signed distance

field to adaptively avoid extra work when making visualizations, different network

architectures that are able to exploit parallel workloads better, or possibly different

forms of synthetically-focused input audio.

By working in simulation, we have been able to carefully control our dataset

curation, our geometric training labels, and sources of noise and measurement er-

rors, and in this clean virtual setting, we have shown that our implicit neural net-

work with synthetically-focused audio as an input representation performs far bet-

ter than convolutional neural networks operating on whole audio recordings and

whole scenes at once in a dense representation. However, this does not directly

allow us to conclude that our method can be easily realized in a physical setting.

One limitation we anticipate is the need for accurate geometric labels during train-
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ing which will be expensive to produce from physical environments. Fortunately,

as we have shown, our implicit method is very sample-efficient, and thus can be

expected to require fewer real-world examples than competing methods. While

we anticipate our model to still perform well in the presence of light or moderate

noise when trained on similarly noisy data, this remains to be demonstrated. Ad-

ditionally, in our distance-based amplitude compensation, we have assumed that

recorded echoes are produced by small deflectors. In human environments, in the

presence of large walls, rooms, and furniture, the returning echoes may be much

stronger than those produced by small obstacles, and consequently models will

need to learn to account for a much larger dynamic range to produce useful pre-

dictions in such settings. Extra precautions in the design and training of the neural

network may be needed to prevent large echoes from over-powering those from

small objects.

By design, our neural network has no direct spatial awareness, and is only able

to reason about the presence of reflective obstacles using audio signals that have

been transparently shifted and narrowed in time. While our network clearly out-

performs existing fully-convolutional networks, this lack of information has the

consequence that our network is less able to reason globally or about distant in-

teractions, such as secondary reflections and occluding obstacles near the receiver

but far from the sampling location. While it is theoretically possible to see around

corners using sound, our current formulation limits this by assuming only straight

paths and primary reflections.

5.2 Future Work
The robustness of our method to environmental noise and measurement errors re-

mains to be evaluated, and may be further explored in subsequent research. While

we expect these factors to be detrimental to our model’s performance, we also note

that our method is easy to extend with the use of additional receivers which can be

expected to improve performance. Additionally, while our current neural network

does not explicitly know the spatial locations of its receivers and treats each input

channel separately, we believe an even more generalized model may result from

giving the model some limited awareness of its receiver arrangement and a shared
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learnable parameterization of each receiver’s audio signal conditioned on its loca-

tion. If done correctly, this would incorporate the inherent symmetry of the receiver

arrangement into the model’s training procedure for even better sample efficiency.

At present, our model is able to learn different behaviours for each incoming audio

channel separately, due to our use of one feature channel per audio recording in our

input convolutional layers.

In our simulation, we have limited ourselves to obstacles with a single acoustic

material and static scenes. When acquiring a physical dataset, if the acoustic prop-

erties of obstacles are captured, it may be straightforward to augment our neural

network model with additional outputs for the material properties at any sampling

location, and it may then be determined to what extent such predictions are possible

or reliable. Additionally, if obstacles are allowed to move while being measured,

and this motion is accurately captured, it may similarly be possible to estimate

the instantaneous velocity of obstacles with our model due to Doppler shifting,

although this may require reformulating our time-of-flight calculations when syn-

thetically focusing the recorded audio signals.

An additional course for future work may be ways to relax the straight-line

assumptions made by our synthetic focusing procedure, in order to better model

secondary reflections and occlusions. This may be possible using recursive tech-

niques, for example by using estimates of one nearby obstacle location to find sec-

ondary reflections it contributes to. However, this may compromise the efficient

parallel nature of our proposed technique in which all sampling locations may be

evaluated independently.

In the shorter term however, the practical usability of our model in real life

depends on its visualization speed which presently is very slow, and on the avail-

ability of detailed, volumetric scene information, which must be somehow acquired

in a physical dataset. Addressing these two factors—for example with a more effi-

cient parallel formulation of our model and a dataset capture system with acoustic

hardware and precise measurements of the nearby physical environment—means

that our system will be ready for interactive applications.
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Chapter 6

Conclusion

We have proposed a novel audio representation for learned acoustic reconstruc-

tion inspired by synthetic aperture techniques, and shown in simulation that this

representation leads to far better performance and generalization than that of com-

peting models which use fully-convolutional neural networks and dense geometric

representations. Our implicit formulation means that trained models can be made

much smaller and require smaller training datasets relative to other existing net-

works which use dense representations and which consider entire scenes at once.

Because of its sample efficiency, our model can be trained using fewer examples

which makes it more readily applicable in the real world where dataset curation

remains a significant challenge.
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Appendix A

Supporting Materials

A.1 Bat-G Net Implementation and Training
The re-implementation of Bat-G Net used in our studies follows the architecture

described by Hwang et al. [16] as closely as possible in nearly all regards, but dif-

fers in a number of minor aspects where we made simplifications that we describe

in this section.

Firstly, unlike Hwang et al., we do not use deformable convolutions and in-

stead use standard convolutional layers with identical kernel sizes when defining

the neural encoder which maps from spectrograms to a latent representation, sim-

ply because at the time of writing, deformable convolutions are not implemented

in the PyTorch framework [34]. We additionally do not use dropout when training

our Bat-G Net implementation.

According to our best understanding of the network diagram given in Fig-

ure 4 of Hwang et al.’s paper, and according to samples of source code shared

by the paper authors, the fully-connected layer at the middle of the Bat-G Net

model has 65,536 input neurons and 65,536 output neurons. This implies a to-

tal of 4,294,967,296 learnable weights for the fully-connected layer alone, which,

assuming 4 bytes per floating point number in hardware, has a memory footprint

of 16 GB which exceeds the total memory of most modern high-end GPUs. We

believe this to be a either a misunderstanding or a misrepresentation of the net-

work architecture that was used in the experiments of Hwang et al., and so in our
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re-implementation, we limit the size of this fully-connected layer to 4096 input

neurons and 4096 output neurons, for a total of 16,777,216 learnable parameters

and 64 MB of memory for the weight matrix. We similarly adapt the feature di-

mensions of the nearby convolutional layers. As shown in Table 5.1, this results in

a total number of learnable parameters similar to that of the BatVision models.

As proposed by Hwang et al., the Bat-G Net model produces a 64×64×64 vol-

umetric output containing two output channels which are interpreted as the logits

of a binary probability distribution, as demonstrated by the use of the cross-entropy

loss in Equation 9 of their paper. Instead, we use a single output channel in our fi-

nal layer of the Bat-G Net decoder, which we interpret directly as the occupancy at

each grid location, ranging from 0 as unoccupied to 1 as occupied. During training,

we instead minimize the mean squared error

L(ŷ,y) =
1

643

64

∑
i=1

64

∑
j=1

64

∑
k=1

(yi, j,k− ŷi, j,k)
2. (A.1)

To verify that our re-implementation remains faithful to the original, we train

our Bat-G Net model on the ECHO-4CH dataset as used by Hwang et al. and com-

pute its test results after training for 24 hours. Like Hwang et al., we reserve 2600

examples for testing and use the remainder for training. In the ECHO-4CH dataset,

examples are ordered first by their obstacle type and secondly by their orientation,

and each obstacle configuration is repeatedly recorded up to 5 times. According to

correspondence with Hwang et al., in their original experiments, a purely random

partition was used. However, because of the repeated measurements, we believe

this may result in an unrealistic advantage during testing, as it implies that each test

example may have multiple similar examples in the training set. For this reason, in

addition to the random train/test split used by Hwang et al., we perform a second

training experiment where we use the final 2600 examples in the ordered dataset

for testing and the remaining first portion for training, thus largely withholding

unique pairs of obstacles and repetitions of exact configurations from the test set.

We report the F1 score and IOU of both our trained Bat-G Net models in Table A.1.

With our slightly modified Bat-G Net re-implementation, on the ECHO-4CH

dataset, we achieve a result that improves on the F1 score of 0.896 reported by
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Train/Test Split F1 Score ↑ IOU ↑
Random 0.9863 0.9742
Contiguous 0.9303 0.8721

Table A.1: Test results of our Bat-G Net re-implementation after training for
24 hours on the ECHO-4CH dataset, using a contiguous or random parti-
tion of the full dataset for training and testing.

Hwang et al. using both the random and the contiguous train/test split. We present

this as validation that our re-implementation is at least as good as the one used

by Hwang et al. in their original work and thus a fair comparison in our broader

experiments. We additionally observe that with the contiguous train/test split, the

model performance suffers, suggesting the the test set in this case truly was more

distinct from the corresponding training data than in the purely random split.

A.2 Comparing the ECHO-4CH and RANDOM Datasets
While Bat-G Net achieves very high test performance on the ECHO-4CH dataset,

we found its performance to be significantly lower on our RANDOM dataset even

though it is conceptually very similar. In this section, we give a variety of reasons

why this may be expected given only differences in these two datasets.

The obstacles in ECHO-4CH follow a deterministic but limited distribution, re-

maining fixed on a plane and being rotated at fixed intervals. From the visual-

izations summarizing the obstacles of both datasets we provide in Figure A.1, it

is apparent that while our RANDOM dataset places obstacles throughout the entire

volume of the ROI rather uniformly, the ECHO-4CH dataset uses less than a third

of the available volume. Consequently, the distribution of obstacle configurations

that a model trained on this distrubition is much smaller.

A further reason for losses in performance when training on the RANDOM

dataset relative to the ECHO-4CH dataset lies in the differences in the audio res-

olution used in both datasets. The spectrogram of the ECHO-4CH dataset are each

256×256 pixels in size, and are computed from high-bandwidth ultrasonic micro-

phones working with FM sweeps between 20 and 120 kHz. By comparison, the

bandwidth used in our acoustic simulation is much narrower at 18 to 22 kHz, and
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(a) ECHO-4CH, front (b) ECHO-4CH, side (c) ECHO-4CH, top

(d) RANDOM, front (e) RANDOM, side (f) RANDOM, top

Figure A.1: Spatially-varying density of obstacles in the ROIs of both the
RANDOM and ECHO-4CH datasets as viewed from different directions.
These images were creating by summing the occupancy maps of all
examples in each dataset before projecting along the viewing direc-
tion.

consequently the spectrograms we generate from our simulated datasets may be

expected to contain less information.

Although the ROI of our RANDOM dataset is larger than that of ECHO-4CH,

both in terms of physical dimensions at 108×69×69 cm versus 64×64×64 cm

respectively, and in terms of grid size at 144×112×112 units versus 64×64×64,

we do not believe this to be a factor in relative model performance. When training

the Bat-G Net model on our simulated datasets, we hold the output resolution of

Bat-G Net fixed at its original 643 grid size, and linearly resample between this and

our simulation grid to generate training labels and compute losses, and perform

our evaluations. Thus, although our RANDOM dataset is spatially larger, Bat-G Net

effectively maintains a fixed output grid size throughout our experiments.

A.3 BatVision Implementation and Training
The authors of BatVision [9] kindly have made their model source code available in

a public GitHub repository at https://github.com/SaschaHornauer/Batvision, which

we use in our experiments. We cloned the repository at the commit identified
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by the hash value 15ba875aadfd1deb39ece3922ecb87b9d8700aa9 and

trivially modified the waveform and spectrogram encoders to use 4 input audio

channels instead of 2, in order to allow better spatial reasoning and allow for a

more fair comparison against our model and Bat-G Net. The loss function we min-

imize when training both BatVision models is identical to that used by Christensen

et al.
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